There's an entire agent system inside that automates the entire ML creation cycle - from the idea to the finished solution, without manual fiddling with architecture and pipelines.
How it works:
โ You formulate the task in ordinary text and provide the data. If necessary, the system extracts the schema itselfโ Under the hood, a group of AI agents work: one designs the model, the second writes the code, the third evaluates the quality and corrects errorsโ If there's a lack of data, the system can generate a synthetic dataset for testingโ There's support for Ray for parallel model exploration and scaling to cores or clustersโ It connects to any cloud or local models via LiteLLM
It's ideal for rapid prototyping and experiments, when it's important to quickly get a working result - get it here.
https://github.com/plexe-ai/plexe
tags: #useful
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2
โ
Data Science Project Ideas
1๏ธโฃ Beginner Friendly Projects
โข Exploratory Data Analysis (EDA) on CSV datasets
โข Student Marks Analysis
โข COVID / Weather Data Analysis
โข Simple Data Visualization Dashboard
โข Basic Recommendation System (rule-based)
2๏ธโฃ Python for Data Science
โข Sales Data Analysis using Pandas
โข Web Scraping + Analysis (BeautifulSoup)
โข Data Cleaning Preprocessing Project
โข Movie Rating Analysis
โข Stock Price Analysis (historical data)
3๏ธโฃ Machine Learning Projects
โข House Price Prediction
โข Spam Email Classifier
โข Loan Approval Prediction
โข Customer Churn Prediction
โข Iris / Titanic Dataset Classification
4๏ธโฃ Data Visualization Projects
โข Interactive Dashboard using Matplotlib/Seaborn
โข Sales Performance Dashboard
โข Social Media Analytics Dashboard
โข COVID Trends Visualization
โข Country-wise GDP Analysis
5๏ธโฃ NLP (Text Language) Projects
โข Sentiment Analysis on Reviews
โข Resume Screening System
โข Fake News Detection
โข Chatbot (Rule-based โ ML-based)
โข Topic Modeling on Articles
6๏ธโฃ Advanced ML / AI Projects
โข Recommendation System (Collaborative Filtering)
โข Credit Card Fraud Detection
โข Image Classification (CNN basics)
โข Face Mask Detection
โข Speech-to-Text Analysis
7๏ธโฃ Data Engineering / Big Data
โข ETL Pipeline using Python
โข Data Warehouse Design (Star Schema)
โข Log File Analysis
โข API Data Ingestion Project
โข Batch Processing with Large Datasets
8๏ธโฃ Real-World / Portfolio Projects
โข End-to-End Data Science Project
โข Business Problem โ Data โ Model โ Insights
โข Kaggle Competition Project
โข Open Dataset Case Study
โข Automated Data Reporting Tool
1๏ธโฃ Beginner Friendly Projects
โข Exploratory Data Analysis (EDA) on CSV datasets
โข Student Marks Analysis
โข COVID / Weather Data Analysis
โข Simple Data Visualization Dashboard
โข Basic Recommendation System (rule-based)
2๏ธโฃ Python for Data Science
โข Sales Data Analysis using Pandas
โข Web Scraping + Analysis (BeautifulSoup)
โข Data Cleaning Preprocessing Project
โข Movie Rating Analysis
โข Stock Price Analysis (historical data)
3๏ธโฃ Machine Learning Projects
โข House Price Prediction
โข Spam Email Classifier
โข Loan Approval Prediction
โข Customer Churn Prediction
โข Iris / Titanic Dataset Classification
4๏ธโฃ Data Visualization Projects
โข Interactive Dashboard using Matplotlib/Seaborn
โข Sales Performance Dashboard
โข Social Media Analytics Dashboard
โข COVID Trends Visualization
โข Country-wise GDP Analysis
5๏ธโฃ NLP (Text Language) Projects
โข Sentiment Analysis on Reviews
โข Resume Screening System
โข Fake News Detection
โข Chatbot (Rule-based โ ML-based)
โข Topic Modeling on Articles
6๏ธโฃ Advanced ML / AI Projects
โข Recommendation System (Collaborative Filtering)
โข Credit Card Fraud Detection
โข Image Classification (CNN basics)
โข Face Mask Detection
โข Speech-to-Text Analysis
7๏ธโฃ Data Engineering / Big Data
โข ETL Pipeline using Python
โข Data Warehouse Design (Star Schema)
โข Log File Analysis
โข API Data Ingestion Project
โข Batch Processing with Large Datasets
8๏ธโฃ Real-World / Portfolio Projects
โข End-to-End Data Science Project
โข Business Problem โ Data โ Model โ Insights
โข Kaggle Competition Project
โข Open Dataset Case Study
โข Automated Data Reporting Tool
โค2๐ฅ1
๐ฅ Trending Repository: cognee
๐ Description: Memory for AI Agents in 6 lines of code
๐ Repository URL: https://github.com/topoteretes/cognee
๐ Website: https://www.cognee.ai
๐ Readme: https://github.com/topoteretes/cognee#readme
๐ Statistics:
๐ Stars: 11.7K stars
๐ Watchers: 59
๐ด Forks: 1.2K forks
๐ป Programming Languages: Python - TypeScript - Shell - Dockerfile - CSS - Mako
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: Memory for AI Agents in 6 lines of code
๐ Repository URL: https://github.com/topoteretes/cognee
๐ Website: https://www.cognee.ai
๐ Readme: https://github.com/topoteretes/cognee#readme
๐ Statistics:
๐ Stars: 11.7K stars
๐ Watchers: 59
๐ด Forks: 1.2K forks
๐ป Programming Languages: Python - TypeScript - Shell - Dockerfile - CSS - Mako
๐ท๏ธ Related Topics:
#open_source #ai #knowledge #neo4j #knowledge_graph #openai #help_wanted #graph_database #ai_agents #contributions_welcome #cognitive_architecture #good_first_issue #rag #good_first_pr #vector_database #graph_rag #ai_memory #cognitive_memory #graphrag #context_engineering
==================================
๐ง By: https://t.iss.one/DataScienceM
โค1
๐ฅ Trending Repository: fish-shell
๐ Description: The user-friendly command line shell.
๐ Repository URL: https://github.com/fish-shell/fish-shell
๐ Website: https://fishshell.com
๐ Readme: https://github.com/fish-shell/fish-shell#readme
๐ Statistics:
๐ Stars: 32.3K stars
๐ Watchers: 279
๐ด Forks: 2.2K forks
๐ป Programming Languages: Rust - Shell - Python - HTML - JavaScript - CMake
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: The user-friendly command line shell.
๐ Repository URL: https://github.com/fish-shell/fish-shell
๐ Website: https://fishshell.com
๐ Readme: https://github.com/fish-shell/fish-shell#readme
๐ Statistics:
๐ Stars: 32.3K stars
๐ Watchers: 279
๐ด Forks: 2.2K forks
๐ป Programming Languages: Rust - Shell - Python - HTML - JavaScript - CMake
๐ท๏ธ Related Topics:
#shell #rust #fish #terminal
==================================
๐ง By: https://t.iss.one/DataScienceM
โค1
๐ฅ Trending Repository: prompt-optimizer
๐ Description: ไธๆฌพๆ็คบ่ฏไผๅๅจ๏ผๅฉๅไบ็ผๅ้ซ่ดจ้็ๆ็คบ่ฏ
๐ Repository URL: https://github.com/linshenkx/prompt-optimizer
๐ Website: https://prompt.always200.com
๐ Readme: https://github.com/linshenkx/prompt-optimizer#readme
๐ Statistics:
๐ Stars: 19.2K stars
๐ Watchers: 77
๐ด Forks: 2.4K forks
๐ป Programming Languages: TypeScript - Vue - JavaScript - Shell - CSS - Dockerfile
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: ไธๆฌพๆ็คบ่ฏไผๅๅจ๏ผๅฉๅไบ็ผๅ้ซ่ดจ้็ๆ็คบ่ฏ
๐ Repository URL: https://github.com/linshenkx/prompt-optimizer
๐ Website: https://prompt.always200.com
๐ Readme: https://github.com/linshenkx/prompt-optimizer#readme
๐ Statistics:
๐ Stars: 19.2K stars
๐ Watchers: 77
๐ด Forks: 2.4K forks
๐ป Programming Languages: TypeScript - Vue - JavaScript - Shell - CSS - Dockerfile
๐ท๏ธ Related Topics:
#prompt #prompt_toolkit #prompt_tuning #llm #prompt_engineering #prompt_optimization
==================================
๐ง By: https://t.iss.one/DataScienceM
โค2
๐ฅ Trending Repository: anet
๐ Description: Simple Rust VPN Client / Server
๐ Repository URL: https://github.com/ZeroTworu/anet
๐ Readme: https://github.com/ZeroTworu/anet#readme
๐ Statistics:
๐ Stars: 268 stars
๐ Watchers: 15
๐ด Forks: 20 forks
๐ป Programming Languages: Rust - Inno Setup - Shell - Makefile
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: Simple Rust VPN Client / Server
๐ Repository URL: https://github.com/ZeroTworu/anet
๐ Readme: https://github.com/ZeroTworu/anet#readme
๐ Statistics:
๐ Stars: 268 stars
๐ Watchers: 15
๐ด Forks: 20 forks
๐ป Programming Languages: Rust - Inno Setup - Shell - Makefile
๐ท๏ธ Related Topics:
#rust #vpn
==================================
๐ง By: https://t.iss.one/DataScienceM
โค2
๐ฅ Trending Repository: data-engineer-handbook
๐ Description: This is a repo with links to everything you'd ever want to learn about data engineering
๐ Repository URL: https://github.com/DataExpert-io/data-engineer-handbook
๐ Readme: https://github.com/DataExpert-io/data-engineer-handbook#readme
๐ Statistics:
๐ Stars: 39.7K stars
๐ Watchers: 466
๐ด Forks: 7.6K forks
๐ป Programming Languages: Jupyter Notebook - Python - Makefile - Dockerfile - Shell
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: This is a repo with links to everything you'd ever want to learn about data engineering
๐ Repository URL: https://github.com/DataExpert-io/data-engineer-handbook
๐ Readme: https://github.com/DataExpert-io/data-engineer-handbook#readme
๐ Statistics:
๐ Stars: 39.7K stars
๐ Watchers: 466
๐ด Forks: 7.6K forks
๐ป Programming Languages: Jupyter Notebook - Python - Makefile - Dockerfile - Shell
๐ท๏ธ Related Topics:
#data #awesome #sql #bigdata #dataengineering #apachespark
==================================
๐ง By: https://t.iss.one/DataScienceM
โค1
Data Science Interview Prep Guide
1๏ธโฃ Core Data Science Concepts
โข What is Data Science vs Data Analytics vs ML
โข Descriptive, diagnostic, predictive, prescriptive analytics
โข Structured vs unstructured data
โข Data-driven decision making
โข Business problem framing
2๏ธโฃ Statistics Probability (Non-Negotiable)
โข Mean, median, variance, standard deviation
โข Probability distributions (normal, binomial, Poisson)
โข Hypothesis testing p-values
โข Confidence intervals
โข Correlation vs causation
โข Sampling bias
3๏ธโฃ Data Cleaning EDA
โข Handling missing values outliers
โข Data normalization scaling
โข Feature engineering
โข Exploratory data analysis (EDA)
โข Data leakage detection
โข Data quality validation
4๏ธโฃ Python SQL for Data Science
โข Python (NumPy, Pandas)
โข Data manipulation transformations
โข Vectorization performance optimization
โข SQL joins, CTEs, window functions
โข Writing business-ready queries
5๏ธโฃ Machine Learning Essentials
โข Supervised vs unsupervised learning
โข Regression vs classification
โข Model selection baseline models
โข Overfitting, underfitting
โข Biasโvariance tradeoff
โข Hyperparameter tuning
6๏ธโฃ Model Evaluation Metrics
โข Accuracy, precision, recall, F1
โข ROC AUC
โข Confusion matrix
โข RMSE, MAE, log loss
โข Metrics for imbalanced data
โข Linking ML metrics to business KPIs
7๏ธโฃ Real-World Deployment Knowledge
โข Feature stores
โข Model deployment (batch vs real-time)
โข Model monitoring drift
โข Experiment tracking
โข Data model versioning
โข Model explainability (business-friendly)
8๏ธโฃ Must-Have Projects
โข Customer churn prediction
โข Fraud detection
โข Sales or demand forecasting
โข Recommendation system
โข End-to-end ML pipeline
โข Business-focused case study
9๏ธโฃ Common Interview Questions
โข Walk me through an end-to-end DS project
โข How do you choose evaluation metrics?
โข How do you handle imbalanced data?
โข How do you explain a model to leadership?
โข How do you improve a failing model?
๐ Pro Tips
โ๏ธ Always connect answers to business impact
โ๏ธ Explain why, not just how
โ๏ธ Be clear about trade-offs
โ๏ธ Discuss failures learnings
โ๏ธ Show structured thinking
https://t.iss.one/DataScienceN
1๏ธโฃ Core Data Science Concepts
โข What is Data Science vs Data Analytics vs ML
โข Descriptive, diagnostic, predictive, prescriptive analytics
โข Structured vs unstructured data
โข Data-driven decision making
โข Business problem framing
2๏ธโฃ Statistics Probability (Non-Negotiable)
โข Mean, median, variance, standard deviation
โข Probability distributions (normal, binomial, Poisson)
โข Hypothesis testing p-values
โข Confidence intervals
โข Correlation vs causation
โข Sampling bias
3๏ธโฃ Data Cleaning EDA
โข Handling missing values outliers
โข Data normalization scaling
โข Feature engineering
โข Exploratory data analysis (EDA)
โข Data leakage detection
โข Data quality validation
4๏ธโฃ Python SQL for Data Science
โข Python (NumPy, Pandas)
โข Data manipulation transformations
โข Vectorization performance optimization
โข SQL joins, CTEs, window functions
โข Writing business-ready queries
5๏ธโฃ Machine Learning Essentials
โข Supervised vs unsupervised learning
โข Regression vs classification
โข Model selection baseline models
โข Overfitting, underfitting
โข Biasโvariance tradeoff
โข Hyperparameter tuning
6๏ธโฃ Model Evaluation Metrics
โข Accuracy, precision, recall, F1
โข ROC AUC
โข Confusion matrix
โข RMSE, MAE, log loss
โข Metrics for imbalanced data
โข Linking ML metrics to business KPIs
7๏ธโฃ Real-World Deployment Knowledge
โข Feature stores
โข Model deployment (batch vs real-time)
โข Model monitoring drift
โข Experiment tracking
โข Data model versioning
โข Model explainability (business-friendly)
8๏ธโฃ Must-Have Projects
โข Customer churn prediction
โข Fraud detection
โข Sales or demand forecasting
โข Recommendation system
โข End-to-end ML pipeline
โข Business-focused case study
9๏ธโฃ Common Interview Questions
โข Walk me through an end-to-end DS project
โข How do you choose evaluation metrics?
โข How do you handle imbalanced data?
โข How do you explain a model to leadership?
โข How do you improve a failing model?
๐ Pro Tips
โ๏ธ Always connect answers to business impact
โ๏ธ Explain why, not just how
โ๏ธ Be clear about trade-offs
โ๏ธ Discuss failures learnings
โ๏ธ Show structured thinking
https://t.iss.one/DataScienceN
โค5
Data Science Jupyter Notebooks
Data Science Interview Prep Guide 1๏ธโฃ Core Data Science Concepts โข What is Data Science vs Data Analytics vs ML โข Descriptive, diagnostic, predictive, prescriptive analytics โข Structured vs unstructured data โข Data-driven decision making โข Business problemโฆ
If youโre prepping for a data science role, this guide has EVERYTHING you need. Check it out! ๐ก
โค3
๐ฅ Trending Repository: shannon
๐ Description: Fully autonomous AI hacker to find actual exploits in your web apps. Shannon has achieved a 96.15% success rate on the hint-free, source-aware XBOW Benchmark.
๐ Repository URL: https://github.com/KeygraphHQ/shannon
๐ Website: https://keygraph.io/
๐ Readme: https://github.com/KeygraphHQ/shannon#readme
๐ Statistics:
๐ Stars: 7.9K stars
๐ Watchers: 63
๐ด Forks: 1.1K forks
๐ป Programming Languages: TypeScript - JavaScript - Shell - Dockerfile
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: Fully autonomous AI hacker to find actual exploits in your web apps. Shannon has achieved a 96.15% success rate on the hint-free, source-aware XBOW Benchmark.
๐ Repository URL: https://github.com/KeygraphHQ/shannon
๐ Website: https://keygraph.io/
๐ Readme: https://github.com/KeygraphHQ/shannon#readme
๐ Statistics:
๐ Stars: 7.9K stars
๐ Watchers: 63
๐ด Forks: 1.1K forks
๐ป Programming Languages: TypeScript - JavaScript - Shell - Dockerfile
๐ท๏ธ Related Topics:
#security_audit #penetration_testing #pentesting #security_automation #security_tools
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: litebox
๐ Description: A security-focused library OS supporting kernel- and user-mode execution
๐ Repository URL: https://github.com/microsoft/litebox
๐ Readme: https://github.com/microsoft/litebox#readme
๐ Statistics:
๐ Stars: 914 stars
๐ Watchers: 11
๐ด Forks: 40 forks
๐ป Programming Languages: Rust - C - JavaScript - CSS - Assembly - Python
๐ท๏ธ Related Topics: Not available
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: A security-focused library OS supporting kernel- and user-mode execution
๐ Repository URL: https://github.com/microsoft/litebox
๐ Readme: https://github.com/microsoft/litebox#readme
๐ Statistics:
๐ Stars: 914 stars
๐ Watchers: 11
๐ด Forks: 40 forks
๐ป Programming Languages: Rust - C - JavaScript - CSS - Assembly - Python
๐ท๏ธ Related Topics: Not available
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: heretic
๐ Description: Fully automatic censorship removal for language models
๐ Repository URL: https://github.com/p-e-w/heretic
๐ Readme: https://github.com/p-e-w/heretic#readme
๐ Statistics:
๐ Stars: 4.5K stars
๐ Watchers: 27
๐ด Forks: 441 forks
๐ป Programming Languages: Python
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: Fully automatic censorship removal for language models
๐ Repository URL: https://github.com/p-e-w/heretic
๐ Readme: https://github.com/p-e-w/heretic#readme
๐ Statistics:
๐ Stars: 4.5K stars
๐ Watchers: 27
๐ด Forks: 441 forks
๐ป Programming Languages: Python
๐ท๏ธ Related Topics:
#transformer #llm #abliteration
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: MiniCPM-o
๐ Description: A Gemini 2.5 Flash Level MLLM for Vision, Speech, and Full-Duplex Multimodal Live Streaming on Your Phone
๐ Repository URL: https://github.com/OpenBMB/MiniCPM-o
๐ Readme: https://github.com/OpenBMB/MiniCPM-o#readme
๐ Statistics:
๐ Stars: 23.1K stars
๐ Watchers: 156
๐ด Forks: 1.8K forks
๐ป Programming Languages: Python - Vue - JavaScript - Shell - Less - CSS
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: A Gemini 2.5 Flash Level MLLM for Vision, Speech, and Full-Duplex Multimodal Live Streaming on Your Phone
๐ Repository URL: https://github.com/OpenBMB/MiniCPM-o
๐ Readme: https://github.com/OpenBMB/MiniCPM-o#readme
๐ Statistics:
๐ Stars: 23.1K stars
๐ Watchers: 156
๐ด Forks: 1.8K forks
๐ป Programming Languages: Python - Vue - JavaScript - Shell - Less - CSS
๐ท๏ธ Related Topics:
#multi_modal #minicpm #minicpm_v
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: escrcpy
๐ Description: ๐ฑ Display and control your Android device graphically with scrcpy.
๐ Repository URL: https://github.com/viarotel-org/escrcpy
๐ Website: https://viarotel.eu.org/
๐ Readme: https://github.com/viarotel-org/escrcpy#readme
๐ Statistics:
๐ Stars: 7.7K stars
๐ Watchers: 48
๐ด Forks: 563 forks
๐ป Programming Languages: JavaScript - Vue - TypeScript - Roff - CSS - VBScript
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: ๐ฑ Display and control your Android device graphically with scrcpy.
๐ Repository URL: https://github.com/viarotel-org/escrcpy
๐ Website: https://viarotel.eu.org/
๐ Readme: https://github.com/viarotel-org/escrcpy#readme
๐ Statistics:
๐ Stars: 7.7K stars
๐ Watchers: 48
๐ด Forks: 563 forks
๐ป Programming Languages: JavaScript - Vue - TypeScript - Roff - CSS - VBScript
๐ท๏ธ Related Topics:
#android #windows #macos #linux #screenshots #gui #recording #screensharing #mirroring #hacktoberfest #scrcpy #scrcpy_engine #gnirehtet #genymobile #scrcpy_gui #hacktoberfest2025 #hacktoberfest2026
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: awesome-claude-skills
๐ Description: A curated list of awesome Claude Skills, resources, and tools for customizing Claude AI workflows
๐ Repository URL: https://github.com/ComposioHQ/awesome-claude-skills
๐ Readme: https://github.com/ComposioHQ/awesome-claude-skills#readme
๐ Statistics:
๐ Stars: 31.5K stars
๐ Watchers: 244
๐ด Forks: 3K forks
๐ป Programming Languages: Python - JavaScript - Shell
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: A curated list of awesome Claude Skills, resources, and tools for customizing Claude AI workflows
๐ Repository URL: https://github.com/ComposioHQ/awesome-claude-skills
๐ Readme: https://github.com/ComposioHQ/awesome-claude-skills#readme
๐ Statistics:
๐ Stars: 31.5K stars
๐ Watchers: 244
๐ด Forks: 3K forks
๐ป Programming Languages: Python - JavaScript - Shell
๐ท๏ธ Related Topics:
#automation #skill #mcp #saas #cursor #codex #workflow_automation #ai_agents #claude #rube #gemini_cli #composio #antigravity #agent_skills #claude_code
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ฅ Trending Repository: gitbutler
๐ Description: The GitButler version control client, backed by Git, powered by Tauri/Rust/Svelte
๐ Repository URL: https://github.com/gitbutlerapp/gitbutler
๐ Website: https://gitbutler.com
๐ Readme: https://github.com/gitbutlerapp/gitbutler#readme
๐ Statistics:
๐ Stars: 17.7K stars
๐ Watchers: 47
๐ด Forks: 768 forks
๐ป Programming Languages: Rust - Svelte - TypeScript - Shell - CSS - JavaScript
๐ท๏ธ Related Topics:
==================================
๐ง By: https://t.iss.one/DataScienceM
๐ Description: The GitButler version control client, backed by Git, powered by Tauri/Rust/Svelte
๐ Repository URL: https://github.com/gitbutlerapp/gitbutler
๐ Website: https://gitbutler.com
๐ Readme: https://github.com/gitbutlerapp/gitbutler#readme
๐ Statistics:
๐ Stars: 17.7K stars
๐ Watchers: 47
๐ด Forks: 768 forks
๐ป Programming Languages: Rust - Svelte - TypeScript - Shell - CSS - JavaScript
๐ท๏ธ Related Topics:
#github #git #tauri
==================================
๐ง By: https://t.iss.one/DataScienceM
One day or Day one. You decide.
Data Science edition.
๐ข๐ป๐ฒ ๐๐ฎ๐ : I will learn SQL.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Download mySQL Workbench.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will build my projects for my portfolio.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Look on Kaggle for a dataset to work on.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will master statistics.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Start the free Khan Academy Statistics and Probability course.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will learn to tell stories with data.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Install Tableau Public and create my first chart.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will become a Data Scientist.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Update my resume and apply to some Data Science job postings.
https://t.iss.one/DataScienceN
Data Science edition.
๐ข๐ป๐ฒ ๐๐ฎ๐ : I will learn SQL.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Download mySQL Workbench.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will build my projects for my portfolio.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Look on Kaggle for a dataset to work on.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will master statistics.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Start the free Khan Academy Statistics and Probability course.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will learn to tell stories with data.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Install Tableau Public and create my first chart.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will become a Data Scientist.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Update my resume and apply to some Data Science job postings.
https://t.iss.one/DataScienceN
โค6
Data Science Jupyter Notebooks
One day or Day one. You decide. Data Science edition. ๐ข๐ป๐ฒ ๐๐ฎ๐ : I will learn SQL. ๐๐ฎ๐ ๐ข๐ป๐ฒ: Download mySQL Workbench. ๐ข๐ป๐ฒ ๐๐ฎ๐: I will build my projects for my portfolio. ๐๐ฎ๐ ๐ข๐ป๐ฒ: Look on Kaggle for a dataset to work on. ๐ข๐ป๐ฒ ๐๐ฎ๐: I will master statistics.โฆ
Donโt wait for the perfect moment. Start today
Install that tool, pick that dataset, take that course. Every big goal begins with Day One ๐ช
Install that tool, pick that dataset, take that course. Every big goal begins with Day One ๐ช
โค4
Forwarded from Learn Python Hub
This channels is for Programmers, Coders, Software Engineers.
0๏ธโฃ Python
1๏ธโฃ Data Science
2๏ธโฃ Machine Learning
3๏ธโฃ Data Visualization
4๏ธโฃ Artificial Intelligence
5๏ธโฃ Data Analysis
6๏ธโฃ Statistics
7๏ธโฃ Deep Learning
8๏ธโฃ programming Languages
โ
https://t.iss.one/addlist/8_rRW2scgfRhOTc0
โ
https://t.iss.one/Codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
Here is a powerful ๐๐ก๐ง๐๐ฅ๐ฉ๐๐๐ช ๐ง๐๐ฃ to help you land a job!
Most people who are skilled enough would be able to clear technical rounds with ease.
But when it comes to ๐ฏ๐ฒ๐ต๐ฎ๐๐ถ๐ผ๐ฟ๐ฎ๐น/๐ฐ๐๐น๐๐๐ฟ๐ฒ ๐ณ๐ถ๐ rounds, some folks may falter and lose the potential offer.
Many companies schedule a behavioral round with a top-level manager in the organization to understand the culture fit (except for freshers).
One needs to clear this round to reach the salary negotiation round.
Here are some tips to clear such rounds:
1๏ธโฃ Once the HR schedules the interview, try to find the LinkedIn profile of the interviewer using the name in their email ID.
2๏ธโฃ Learn more about his/her past experiences and try to strike up a conversation on that during the interview.
3๏ธโฃ This shows that you have done good research and also helps strike a personal connection.
4๏ธโฃ Also, this is the round not just to evaluate if you're a fit for the company, but also to assess if the company is a right fit for you.
5๏ธโฃ Hence, feel free to ask many questions about your role and company to get a clear understanding before taking the offer. This shows that you really care about the role you're getting into.
๐ก ๐๐ผ๐ป๐๐ ๐๐ถ๐ฝ - Be polite yet assertive in such interviews. It impresses a lot of senior folks.
https://t.iss.one/DataScienceN
Most people who are skilled enough would be able to clear technical rounds with ease.
But when it comes to ๐ฏ๐ฒ๐ต๐ฎ๐๐ถ๐ผ๐ฟ๐ฎ๐น/๐ฐ๐๐น๐๐๐ฟ๐ฒ ๐ณ๐ถ๐ rounds, some folks may falter and lose the potential offer.
Many companies schedule a behavioral round with a top-level manager in the organization to understand the culture fit (except for freshers).
One needs to clear this round to reach the salary negotiation round.
Here are some tips to clear such rounds:
1๏ธโฃ Once the HR schedules the interview, try to find the LinkedIn profile of the interviewer using the name in their email ID.
2๏ธโฃ Learn more about his/her past experiences and try to strike up a conversation on that during the interview.
3๏ธโฃ This shows that you have done good research and also helps strike a personal connection.
4๏ธโฃ Also, this is the round not just to evaluate if you're a fit for the company, but also to assess if the company is a right fit for you.
5๏ธโฃ Hence, feel free to ask many questions about your role and company to get a clear understanding before taking the offer. This shows that you really care about the role you're getting into.
๐ก ๐๐ผ๐ป๐๐ ๐๐ถ๐ฝ - Be polite yet assertive in such interviews. It impresses a lot of senior folks.
https://t.iss.one/DataScienceN
โค5