Data Science Jupyter Notebooks
12.5K subscribers
314 photos
48 videos
9 files
1.05K links
Explore the world of Data Science through Jupyter Notebooksโ€”insights, tutorials, and tools to boost your data journey. Code, analyze, and visualize smarter with every post.
Download Telegram
๐Ÿค– A tool that allows you to collect ML models based on a text description

There's an entire agent system inside that automates the entire ML creation cycle - from the idea to the finished solution, without manual fiddling with architecture and pipelines.

How it works:
โž– You formulate the task in ordinary text and provide the data. If necessary, the system extracts the schema itself

โž– Under the hood, a group of AI agents work: one designs the model, the second writes the code, the third evaluates the quality and corrects errors

โž– If there's a lack of data, the system can generate a synthetic dataset for testing

โž– There's support for Ray for parallel model exploration and scaling to cores or clusters

โž– It connects to any cloud or local models via LiteLLM


It's ideal for rapid prototyping and experiments, when it's important to quickly get a working result - get it here.
https://github.com/plexe-ai/plexe

tags: #useful

โžก @DataScienceN
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2
โœ… Data Science Project Ideas

1๏ธโƒฃ Beginner Friendly Projects
โ€ข Exploratory Data Analysis (EDA) on CSV datasets
โ€ข Student Marks Analysis
โ€ข COVID / Weather Data Analysis
โ€ข Simple Data Visualization Dashboard
โ€ข Basic Recommendation System (rule-based)

2๏ธโƒฃ Python for Data Science
โ€ข Sales Data Analysis using Pandas
โ€ข Web Scraping + Analysis (BeautifulSoup)
โ€ข Data Cleaning  Preprocessing Project
โ€ข Movie Rating Analysis
โ€ข Stock Price Analysis (historical data)

3๏ธโƒฃ Machine Learning Projects
โ€ข House Price Prediction
โ€ข Spam Email Classifier
โ€ข Loan Approval Prediction
โ€ข Customer Churn Prediction
โ€ข Iris / Titanic Dataset Classification

4๏ธโƒฃ Data Visualization Projects
โ€ข Interactive Dashboard using Matplotlib/Seaborn
โ€ข Sales Performance Dashboard
โ€ข Social Media Analytics Dashboard
โ€ข COVID Trends Visualization
โ€ข Country-wise GDP Analysis

5๏ธโƒฃ NLP (Text  Language) Projects
โ€ข Sentiment Analysis on Reviews
โ€ข Resume Screening System
โ€ข Fake News Detection
โ€ข Chatbot (Rule-based โ†’ ML-based)
โ€ข Topic Modeling on Articles

6๏ธโƒฃ Advanced ML / AI Projects
โ€ข Recommendation System (Collaborative Filtering)
โ€ข Credit Card Fraud Detection
โ€ข Image Classification (CNN basics)
โ€ข Face Mask Detection
โ€ข Speech-to-Text Analysis

7๏ธโƒฃ Data Engineering / Big Data
โ€ข ETL Pipeline using Python
โ€ข Data Warehouse Design (Star Schema)
โ€ข Log File Analysis
โ€ข API Data Ingestion Project
โ€ข Batch Processing with Large Datasets

8๏ธโƒฃ Real-World / Portfolio Projects
โ€ข End-to-End Data Science Project
โ€ข Business Problem โ†’ Data โ†’ Model โ†’ Insights
โ€ข Kaggle Competition Project
โ€ข Open Dataset Case Study
โ€ข Automated Data Reporting Tool
โค2๐Ÿ”ฅ1
๐Ÿ”ฅ Trending Repository: cognee

๐Ÿ“ Description: Memory for AI Agents in 6 lines of code

๐Ÿ”— Repository URL: https://github.com/topoteretes/cognee

๐ŸŒ Website: https://www.cognee.ai

๐Ÿ“– Readme: https://github.com/topoteretes/cognee#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 11.7K stars
๐Ÿ‘€ Watchers: 59
๐Ÿด Forks: 1.2K forks

๐Ÿ’ป Programming Languages: Python - TypeScript - Shell - Dockerfile - CSS - Mako

๐Ÿท๏ธ Related Topics:
#open_source #ai #knowledge #neo4j #knowledge_graph #openai #help_wanted #graph_database #ai_agents #contributions_welcome #cognitive_architecture #good_first_issue #rag #good_first_pr #vector_database #graph_rag #ai_memory #cognitive_memory #graphrag #context_engineering


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
โค1
๐Ÿ”ฅ Trending Repository: fish-shell

๐Ÿ“ Description: The user-friendly command line shell.

๐Ÿ”— Repository URL: https://github.com/fish-shell/fish-shell

๐ŸŒ Website: https://fishshell.com

๐Ÿ“– Readme: https://github.com/fish-shell/fish-shell#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 32.3K stars
๐Ÿ‘€ Watchers: 279
๐Ÿด Forks: 2.2K forks

๐Ÿ’ป Programming Languages: Rust - Shell - Python - HTML - JavaScript - CMake

๐Ÿท๏ธ Related Topics:
#shell #rust #fish #terminal


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
โค1
๐Ÿ”ฅ Trending Repository: prompt-optimizer

๐Ÿ“ Description: ไธ€ๆฌพๆ็คบ่ฏไผ˜ๅŒ–ๅ™จ๏ผŒๅŠฉๅŠ›ไบŽ็ผ–ๅ†™้ซ˜่ดจ้‡็š„ๆ็คบ่ฏ

๐Ÿ”— Repository URL: https://github.com/linshenkx/prompt-optimizer

๐ŸŒ Website: https://prompt.always200.com

๐Ÿ“– Readme: https://github.com/linshenkx/prompt-optimizer#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 19.2K stars
๐Ÿ‘€ Watchers: 77
๐Ÿด Forks: 2.4K forks

๐Ÿ’ป Programming Languages: TypeScript - Vue - JavaScript - Shell - CSS - Dockerfile

๐Ÿท๏ธ Related Topics:
#prompt #prompt_toolkit #prompt_tuning #llm #prompt_engineering #prompt_optimization


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
โค2
๐Ÿ”ฅ Trending Repository: anet

๐Ÿ“ Description: Simple Rust VPN Client / Server

๐Ÿ”— Repository URL: https://github.com/ZeroTworu/anet

๐Ÿ“– Readme: https://github.com/ZeroTworu/anet#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 268 stars
๐Ÿ‘€ Watchers: 15
๐Ÿด Forks: 20 forks

๐Ÿ’ป Programming Languages: Rust - Inno Setup - Shell - Makefile

๐Ÿท๏ธ Related Topics:
#rust #vpn


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
โค2
๐Ÿ”ฅ Trending Repository: data-engineer-handbook

๐Ÿ“ Description: This is a repo with links to everything you'd ever want to learn about data engineering

๐Ÿ”— Repository URL: https://github.com/DataExpert-io/data-engineer-handbook

๐Ÿ“– Readme: https://github.com/DataExpert-io/data-engineer-handbook#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 39.7K stars
๐Ÿ‘€ Watchers: 466
๐Ÿด Forks: 7.6K forks

๐Ÿ’ป Programming Languages: Jupyter Notebook - Python - Makefile - Dockerfile - Shell

๐Ÿท๏ธ Related Topics:
#data #awesome #sql #bigdata #dataengineering #apachespark


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
โค1
Data Science Interview Prep Guide

1๏ธโƒฃ Core Data Science Concepts
โ€ข What is Data Science vs Data Analytics vs ML
โ€ข Descriptive, diagnostic, predictive, prescriptive analytics
โ€ข Structured vs unstructured data
โ€ข Data-driven decision making
โ€ข Business problem framing

2๏ธโƒฃ Statistics  Probability (Non-Negotiable)
โ€ข Mean, median, variance, standard deviation
โ€ข Probability distributions (normal, binomial, Poisson)
โ€ข Hypothesis testing  p-values
โ€ข Confidence intervals
โ€ข Correlation vs causation
โ€ข Sampling  bias

3๏ธโƒฃ Data Cleaning  EDA
โ€ข Handling missing values  outliers
โ€ข Data normalization  scaling
โ€ข Feature engineering
โ€ข Exploratory data analysis (EDA)
โ€ข Data leakage detection
โ€ข Data quality validation

4๏ธโƒฃ Python  SQL for Data Science
โ€ข Python (NumPy, Pandas)
โ€ข Data manipulation  transformations
โ€ข Vectorization  performance optimization
โ€ข SQL joins, CTEs, window functions
โ€ข Writing business-ready queries

5๏ธโƒฃ Machine Learning Essentials
โ€ข Supervised vs unsupervised learning
โ€ข Regression vs classification
โ€ข Model selection  baseline models
โ€ข Overfitting, underfitting
โ€ข Biasโ€“variance tradeoff
โ€ข Hyperparameter tuning

6๏ธโƒฃ Model Evaluation  Metrics
โ€ข Accuracy, precision, recall, F1
โ€ข ROC  AUC
โ€ข Confusion matrix
โ€ข RMSE, MAE, log loss
โ€ข Metrics for imbalanced data
โ€ข Linking ML metrics to business KPIs

7๏ธโƒฃ Real-World  Deployment Knowledge
โ€ข Feature stores
โ€ข Model deployment (batch vs real-time)
โ€ข Model monitoring  drift
โ€ข Experiment tracking
โ€ข Data  model versioning
โ€ข Model explainability (business-friendly)

8๏ธโƒฃ Must-Have Projects
โ€ข Customer churn prediction
โ€ข Fraud detection
โ€ข Sales or demand forecasting
โ€ข Recommendation system
โ€ข End-to-end ML pipeline
โ€ข Business-focused case study

9๏ธโƒฃ Common Interview Questions
โ€ข Walk me through an end-to-end DS project
โ€ข How do you choose evaluation metrics?
โ€ข How do you handle imbalanced data?
โ€ข How do you explain a model to leadership?
โ€ข How do you improve a failing model?

๐Ÿ”Ÿ Pro Tips
โœ”๏ธ Always connect answers to business impact 
โœ”๏ธ Explain why, not just how 
โœ”๏ธ Be clear about trade-offs 
โœ”๏ธ Discuss failures  learnings 
โœ”๏ธ Show structured thinking 

https://t.iss.one/DataScienceN
โค5
๐Ÿ”ฅ Trending Repository: shannon

๐Ÿ“ Description: Fully autonomous AI hacker to find actual exploits in your web apps. Shannon has achieved a 96.15% success rate on the hint-free, source-aware XBOW Benchmark.

๐Ÿ”— Repository URL: https://github.com/KeygraphHQ/shannon

๐ŸŒ Website: https://keygraph.io/

๐Ÿ“– Readme: https://github.com/KeygraphHQ/shannon#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 7.9K stars
๐Ÿ‘€ Watchers: 63
๐Ÿด Forks: 1.1K forks

๐Ÿ’ป Programming Languages: TypeScript - JavaScript - Shell - Dockerfile

๐Ÿท๏ธ Related Topics:
#security_audit #penetration_testing #pentesting #security_automation #security_tools


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: litebox

๐Ÿ“ Description: A security-focused library OS supporting kernel- and user-mode execution

๐Ÿ”— Repository URL: https://github.com/microsoft/litebox

๐Ÿ“– Readme: https://github.com/microsoft/litebox#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 914 stars
๐Ÿ‘€ Watchers: 11
๐Ÿด Forks: 40 forks

๐Ÿ’ป Programming Languages: Rust - C - JavaScript - CSS - Assembly - Python

๐Ÿท๏ธ Related Topics: Not available

==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: heretic

๐Ÿ“ Description: Fully automatic censorship removal for language models

๐Ÿ”— Repository URL: https://github.com/p-e-w/heretic

๐Ÿ“– Readme: https://github.com/p-e-w/heretic#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 4.5K stars
๐Ÿ‘€ Watchers: 27
๐Ÿด Forks: 441 forks

๐Ÿ’ป Programming Languages: Python

๐Ÿท๏ธ Related Topics:
#transformer #llm #abliteration


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: MiniCPM-o

๐Ÿ“ Description: A Gemini 2.5 Flash Level MLLM for Vision, Speech, and Full-Duplex Multimodal Live Streaming on Your Phone

๐Ÿ”— Repository URL: https://github.com/OpenBMB/MiniCPM-o

๐Ÿ“– Readme: https://github.com/OpenBMB/MiniCPM-o#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 23.1K stars
๐Ÿ‘€ Watchers: 156
๐Ÿด Forks: 1.8K forks

๐Ÿ’ป Programming Languages: Python - Vue - JavaScript - Shell - Less - CSS

๐Ÿท๏ธ Related Topics:
#multi_modal #minicpm #minicpm_v


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: escrcpy

๐Ÿ“ Description: ๐Ÿ“ฑ Display and control your Android device graphically with scrcpy.

๐Ÿ”— Repository URL: https://github.com/viarotel-org/escrcpy

๐ŸŒ Website: https://viarotel.eu.org/

๐Ÿ“– Readme: https://github.com/viarotel-org/escrcpy#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 7.7K stars
๐Ÿ‘€ Watchers: 48
๐Ÿด Forks: 563 forks

๐Ÿ’ป Programming Languages: JavaScript - Vue - TypeScript - Roff - CSS - VBScript

๐Ÿท๏ธ Related Topics:
#android #windows #macos #linux #screenshots #gui #recording #screensharing #mirroring #hacktoberfest #scrcpy #scrcpy_engine #gnirehtet #genymobile #scrcpy_gui #hacktoberfest2025 #hacktoberfest2026


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: awesome-claude-skills

๐Ÿ“ Description: A curated list of awesome Claude Skills, resources, and tools for customizing Claude AI workflows

๐Ÿ”— Repository URL: https://github.com/ComposioHQ/awesome-claude-skills

๐Ÿ“– Readme: https://github.com/ComposioHQ/awesome-claude-skills#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 31.5K stars
๐Ÿ‘€ Watchers: 244
๐Ÿด Forks: 3K forks

๐Ÿ’ป Programming Languages: Python - JavaScript - Shell

๐Ÿท๏ธ Related Topics:
#automation #skill #mcp #saas #cursor #codex #workflow_automation #ai_agents #claude #rube #gemini_cli #composio #antigravity #agent_skills #claude_code


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
๐Ÿ”ฅ Trending Repository: gitbutler

๐Ÿ“ Description: The GitButler version control client, backed by Git, powered by Tauri/Rust/Svelte

๐Ÿ”— Repository URL: https://github.com/gitbutlerapp/gitbutler

๐ŸŒ Website: https://gitbutler.com

๐Ÿ“– Readme: https://github.com/gitbutlerapp/gitbutler#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 17.7K stars
๐Ÿ‘€ Watchers: 47
๐Ÿด Forks: 768 forks

๐Ÿ’ป Programming Languages: Rust - Svelte - TypeScript - Shell - CSS - JavaScript

๐Ÿท๏ธ Related Topics:
#github #git #tauri


==================================
๐Ÿง  By: https://t.iss.one/DataScienceM
One day or Day one. You decide.

Data Science edition.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜† : I will learn SQL.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Download mySQL Workbench.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will build my projects for my portfolio.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Look on Kaggle for a dataset to work on.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will master statistics.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Start the free Khan Academy Statistics and Probability course.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will learn to tell stories with data.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Install Tableau Public and create my first chart.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will become a Data Scientist.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Update my resume and apply to some Data Science job postings.


https://t.iss.one/DataScienceN
โค6
Forwarded from Learn Python Hub
This channels is for Programmers, Coders, Software Engineers.

0๏ธโƒฃ Python
1๏ธโƒฃ Data Science
2๏ธโƒฃ Machine Learning
3๏ธโƒฃ Data Visualization
4๏ธโƒฃ Artificial Intelligence
5๏ธโƒฃ Data Analysis
6๏ธโƒฃ Statistics
7๏ธโƒฃ Deep Learning
8๏ธโƒฃ programming Languages

โœ… https://t.iss.one/addlist/8_rRW2scgfRhOTc0

โœ… https://t.iss.one/Codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
Here is a powerful ๐—œ๐—ก๐—ง๐—˜๐—ฅ๐—ฉ๐—œ๐—˜๐—ช ๐—ง๐—œ๐—ฃ to help you land a job!

Most people who are skilled enough would be able to clear technical rounds with ease.

But when it comes to ๐—ฏ๐—ฒ๐—ต๐—ฎ๐˜ƒ๐—ถ๐—ผ๐—ฟ๐—ฎ๐—น/๐—ฐ๐˜‚๐—น๐˜๐˜‚๐—ฟ๐—ฒ ๐—ณ๐—ถ๐˜ rounds, some folks may falter and lose the potential offer.

Many companies schedule a behavioral round with a top-level manager in the organization to understand the culture fit (except for freshers).

One needs to clear this round to reach the salary negotiation round.

Here are some tips to clear such rounds:

1๏ธโƒฃ Once the HR schedules the interview, try to find the LinkedIn profile of the interviewer using the name in their email ID.

2๏ธโƒฃ Learn more about his/her past experiences and try to strike up a conversation on that during the interview.

3๏ธโƒฃ This shows that you have done good research and also helps strike a personal connection.

4๏ธโƒฃ Also, this is the round not just to evaluate if you're a fit for the company, but also to assess if the company is a right fit for you.

5๏ธโƒฃ Hence, feel free to ask many questions about your role and company to get a clear understanding before taking the offer. This shows that you really care about the role you're getting into.

๐Ÿ’ก ๐—•๐—ผ๐—ป๐˜‚๐˜€ ๐˜๐—ถ๐—ฝ - Be polite yet assertive in such interviews. It impresses a lot of senior folks.


https://t.iss.one/DataScienceN
โค5