💡 SciPy: Scientific Computing in Python
SciPy is a fundamental library for scientific and technical computing in Python. Built on NumPy, it provides a wide range of user-friendly and efficient numerical routines for tasks like optimization, integration, linear algebra, and statistics.
• Optimization:
• We provide the function (
• The result object (
• Numerical Integration:
• It returns a tuple containing the integral result and an estimate of the absolute error.
• Linear Algebra:
•
• Statistics:
•
• The p-value helps determine if the difference between sample means is statistically significant (a low p-value, e.g., < 0.05, suggests it is).
#SciPy #Python #DataScience #ScientificComputing #Statistics
━━━━━━━━━━━━━━━
By: @DataScienceM ✨
SciPy is a fundamental library for scientific and technical computing in Python. Built on NumPy, it provides a wide range of user-friendly and efficient numerical routines for tasks like optimization, integration, linear algebra, and statistics.
import numpy as np
from scipy.optimize import minimize
# Define a function to minimize: f(x) = (x - 3)^2
def f(x):
return (x - 3)**2
# Find the minimum of the function with an initial guess
res = minimize(f, x0=0)
print(f"Minimum found at x = {res.x[0]:.4f}")
# Output:
# Minimum found at x = 3.0000
• Optimization:
scipy.optimize.minimize is used to find the minimum value of a function.• We provide the function (
f) and an initial guess (x0=0).• The result object (
res) contains the solution in the .x attribute.from scipy.integrate import quad
# Define the function to integrate: f(x) = sin(x)
def integrand(x):
return np.sin(x)
# Integrate sin(x) from 0 to pi
result, error = quad(integrand, 0, np.pi)
print(f"Integral result: {result:.4f}")
print(f"Estimated error: {error:.2e}")
# Output:
# Integral result: 2.0000
# Estimated error: 2.22e-14
• Numerical Integration:
scipy.integrate.quad calculates the definite integral of a function over a given interval.• It returns a tuple containing the integral result and an estimate of the absolute error.
from scipy.linalg import solve
# Solve the linear system Ax = b
# 3x + 2y = 12
# x - y = 1
A = np.array([[3, 2], [1, -1]])
b = np.array([12, 1])
solution = solve(A, b)
print(f"Solution (x, y): {solution}")
# Output:
# Solution (x, y): [2.8 1.8]
• Linear Algebra:
scipy.linalg provides more advanced linear algebra routines than NumPy.•
solve(A, b) efficiently finds the solution vector x for a system of linear equations defined by a matrix A and a vector b.from scipy import stats
# Create two independent samples
sample1 = np.random.normal(loc=5, scale=2, size=100)
sample2 = np.random.normal(loc=5.5, scale=2, size=100)
# Perform an independent t-test
t_stat, p_value = stats.ttest_ind(sample1, sample2)
print(f"T-statistic: {t_stat:.4f}")
print(f"P-value: {p_value:.4f}")
# Output (will vary):
# T-statistic: -1.7432
# P-value: 0.0829
• Statistics:
scipy.stats is a powerful module for statistical analysis.•
ttest_ind calculates the T-test for the means of two independent samples.• The p-value helps determine if the difference between sample means is statistically significant (a low p-value, e.g., < 0.05, suggests it is).
#SciPy #Python #DataScience #ScientificComputing #Statistics
━━━━━━━━━━━━━━━
By: @DataScienceM ✨
❤3