Data Science Machine Learning Data Analysis
38.7K subscribers
3.63K photos
31 videos
39 files
1.27K links
ads: @HusseinSheikho

This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
Download Telegram
# Real-World Case Study: E-commerce Product Pipeline
import boto3
from PIL import Image
import io

def process_product_image(s3_bucket, s3_key):
# 1. Download from S3
s3 = boto3.client('s3')
response = s3.get_object(Bucket=s3_bucket, Key=s3_key)
img = Image.open(io.BytesIO(response['Body'].read()))

# 2. Standardize dimensions
img = img.convert("RGB")
img = img.resize((1200, 1200), Image.LANCZOS)

# 3. Remove background (simplified)
# In practice: use rembg or AWS Rekognition
img = remove_background(img)

# 4. Generate variants
variants = {
"web": img.resize((800, 800)),
"mobile": img.resize((400, 400)),
"thumbnail": img.resize((100, 100))
}

# 5. Upload to CDN
for name, variant in variants.items():
buffer = io.BytesIO()
variant.save(buffer, "JPEG", quality=95)
s3.upload_fileobj(
buffer,
"cdn-bucket",
f"products/{s3_key.split('/')[-1].split('.')[0]}_{name}.jpg",
ExtraArgs={'ContentType': 'image/jpeg', 'CacheControl': 'max-age=31536000'}
)

# 6. Generate WebP version
webp_buffer = io.BytesIO()
img.save(webp_buffer, "WEBP", quality=85)
s3.upload_fileobj(webp_buffer, "cdn-bucket", f"products/{s3_key.split('/')[-1].split('.')[0]}.webp")

process_product_image("user-uploads", "products/summer_dress.jpg")


By: @DataScienceM πŸ‘

#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
❀1
In Python, building AI-powered Telegram bots unlocks massive potential for image generation, processing, and automationβ€”master this to create viral tools and ace full-stack interviews! πŸ€–

# Basic Bot Setup - The foundation (PTB v20+ Async)
from telegram.ext import Application, CommandHandler, MessageHandler, filters

async def start(update, context):
await update.message.reply_text(
"✨ AI Image Bot Active!\n"
"/generate - Create images from text\n"
"/enhance - Improve photo quality\n"
"/help - Full command list"
)

app = Application.builder().token("YOUR_BOT_TOKEN").build()
app.add_handler(CommandHandler("start", start))
app.run_polling()


# Image Generation - DALL-E Integration (OpenAI)
import openai
from telegram.ext import ContextTypes

openai.api_key = os.getenv("OPENAI_API_KEY")

async def generate(update: Update, context: ContextTypes.DEFAULT_TYPE):
if not context.args:
await update.message.reply_text("❌ Usage: /generate cute robot astronaut")
return

prompt = " ".join(context.args)
try:
response = openai.Image.create(
prompt=prompt,
n=1,
size="1024x1024"
)
await update.message.reply_photo(
photo=response['data'][0]['url'],
caption=f"🎨 Generated: *{prompt}*",
parse_mode="Markdown"
)
except Exception as e:
await update.message.reply_text(f"πŸ”₯ Error: {str(e)}")

app.add_handler(CommandHandler("generate", generate))


Learn more: https://hackmd.io/@husseinsheikho/building-AI-powered-Telegram-bots

#Python #TelegramBot #AI #ImageGeneration #StableDiffusion #OpenAI #MachineLearning #CodingInterview #FullStack #Chatbots #DeepLearning #ComputerVision #Programming #TechJobs #DeveloperTips #CareerGrowth #CloudComputing #Docker #APIs #Python3 #Productivity #TechTips


https://t.iss.one/DataScienceM 🦾
Please open Telegram to view this post
VIEW IN TELEGRAM
❀1
πŸ’‘ Pandas Cheatsheet

A quick guide to essential Pandas operations for data manipulation, focusing on creating, selecting, filtering, and grouping data in a DataFrame.

1. Creating a DataFrame
The primary data structure in Pandas is the DataFrame. It's often created from a dictionary.
import pandas as pd

data = {'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 32, 28],
'City': ['New York', 'Paris', 'New York']}
df = pd.DataFrame(data)

print(df)
# Name Age City
# 0 Alice 25 New York
# 1 Bob 32 Paris
# 2 Charlie 28 New York

β€’ A dictionary is defined where keys become column names and values become the data in those columns. pd.DataFrame() converts it into a tabular structure.

2. Selecting Data with .loc and .iloc
Use .loc for label-based selection and .iloc for integer-position based selection.
# Select the first row by its integer position (0)
print(df.iloc[0])

# Select the row with index label 1 and only the 'Name' column
print(df.loc[1, 'Name'])

# Output for df.iloc[0]:
# Name Alice
# Age 25
# City New York
# Name: 0, dtype: object
#
# Output for df.loc[1, 'Name']:
# Bob

β€’ .iloc[0] gets all data from the row at index position 0.
β€’ .loc[1, 'Name'] gets the data at the intersection of index label 1 and column label 'Name'.

3. Filtering Data
Select subsets of data based on conditions.
# Select rows where Age is greater than 27
filtered_df = df[df['Age'] > 27]
print(filtered_df)
# Name Age City
# 1 Bob 32 Paris
# 2 Charlie 28 New York

β€’ The expression df['Age'] > 27 creates a boolean Series (True/False).
β€’ Using this Series as an index df[...] returns only the rows where the value was True.

4. Grouping and Aggregating
The "group by" operation involves splitting data into groups, applying a function, and combining the results.
# Group by 'City' and calculate the mean age for each city
city_ages = df.groupby('City')['Age'].mean()
print(city_ages)
# City
# New York 26.5
# Paris 32.0
# Name: Age, dtype: float64

β€’ .groupby('City') splits the DataFrame into groups based on unique city values.
β€’ ['Age'].mean() then calculates the mean of the 'Age' column for each of these groups.

#Python #Pandas #DataAnalysis #DataScience #Programming

━━━━━━━━━━━━━━━
By: @DataScienceM ✨
❀1πŸ‘1
β€’ Group data by a column.
df.groupby('col1')

β€’ Group by a column and get the sum.
df.groupby('col1').sum()

β€’ Apply multiple aggregation functions at once.
df.groupby('col1').agg(['mean', 'count'])

β€’ Get the size of each group.
df.groupby('col1').size()

β€’ Get the frequency counts of unique values in a Series.
df['col1'].value_counts()

β€’ Create a pivot table.
pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])


VI. Merging, Joining & Concatenating

β€’ Merge two DataFrames (like a SQL join).
pd.merge(left_df, right_df, on='key_column')

β€’ Concatenate (stack) DataFrames along an axis.
pd.concat([df1, df2]) # Stacks rows

β€’ Join DataFrames on their indexes.
left_df.join(right_df, how='outer')


VII. Input & Output

β€’ Write a DataFrame to a CSV file.
df.to_csv('output.csv', index=False)

β€’ Write a DataFrame to an Excel file.
df.to_excel('output.xlsx', sheet_name='Sheet1')

β€’ Read data from an Excel file.
pd.read_excel('input.xlsx', sheet_name='Sheet1')

β€’ Read from a SQL database.
pd.read_sql_query('SELECT * FROM my_table', connection_object)


VIII. Time Series & Special Operations

β€’ Use the string accessor (.str) for Series operations.
s.str.lower()
s.str.contains('pattern')

β€’ Use the datetime accessor (.dt) for Series operations.
s.dt.year
s.dt.day_name()

β€’ Create a rolling window calculation.
df['col1'].rolling(window=3).mean()

β€’ Create a basic plot from a Series or DataFrame.
df['col1'].plot(kind='hist')


#Python #Pandas #DataAnalysis #DataScience #Programming

━━━━━━━━━━━━━━━
By: @DataScienceM ✨
❀6πŸ‘1πŸ”₯1