Data Science Machine Learning Data Analysis
38.6K subscribers
3.59K photos
31 videos
39 files
1.27K links
ads: @HusseinSheikho

This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
Download Telegram
πŸ”₯ Trending Repository: yt-dlp

πŸ“ Description: A feature-rich command-line audio/video downloader

πŸ”— Repository URL: https://github.com/yt-dlp/yt-dlp

🌐 Website: https://discord.gg/H5MNcFW63r

πŸ“– Readme: https://github.com/yt-dlp/yt-dlp#readme

πŸ“Š Statistics:
🌟 Stars: 124K stars
πŸ‘€ Watchers: 640
🍴 Forks: 9.9K forks

πŸ’» Programming Languages: Python

🏷️ Related Topics:
#python #cli #downloader #youtube_dl #youtube_downloader #sponsorblock #yt_dlp


==================================
🧠 By: https://t.iss.one/DataScienceM
πŸ”₯ Trending Repository: django

πŸ“ Description: The Web framework for perfectionists with deadlines.

πŸ”— Repository URL: https://github.com/django/django

🌐 Website: https://www.djangoproject.com/

πŸ“– Readme: https://github.com/django/django#readme

πŸ“Š Statistics:
🌟 Stars: 84.7K stars
πŸ‘€ Watchers: 2.3k
🍴 Forks: 32.8K forks

πŸ’» Programming Languages: Python - Jinja

🏷️ Related Topics:
#python #django #views #framework #orm #web #apps #templates #models


==================================
🧠 By: https://t.iss.one/DataScienceM
πŸ”₯ Trending Repository: spotify-downloader

πŸ“ Description: Download your Spotify playlists and songs along with album art and metadata (from YouTube if a match is found).

πŸ”— Repository URL: https://github.com/spotDL/spotify-downloader

🌐 Website: https://spotdl.readthedocs.io/en/latest/

πŸ“– Readme: https://github.com/spotDL/spotify-downloader#readme

πŸ“Š Statistics:
🌟 Stars: 21.3K stars
πŸ‘€ Watchers: 197
🍴 Forks: 1.9K forks

πŸ’» Programming Languages: Python

🏷️ Related Topics:
#python #music #playlists #spotify #mp3 #song #hacktoberfest #youtube_music #song_lyrics #download_music #spotdl #spotdl_cli


==================================
🧠 By: https://t.iss.one/DataScienceM
πŸ”₯ Trending Repository: SurfSense

πŸ“ Description: Open Source Alternative to NotebookLM / Perplexity, connected to external sources such as Search Engines, Slack, Linear, Jira, ClickUp, Confluence, Notion, YouTube, GitHub, Discord and more. Join our discord:https://discord.gg/ejRNvftDp9

πŸ”— Repository URL: https://github.com/MODSetter/SurfSense

🌐 Website: https://www.surfsense.net

πŸ“– Readme: https://github.com/MODSetter/SurfSense#readme

πŸ“Š Statistics:
🌟 Stars: 6.7K stars
πŸ‘€ Watchers: 46
🍴 Forks: 507 forks

πŸ’» Programming Languages: Python - TypeScript - MDX - CSS - JavaScript - Dockerfile

🏷️ Related Topics:
#python #chrome_extension #slack #agent #jira #typescript #extension #ai #nextjs #agents #notion #perplexity #rag #fastapi #langchain #ollama #langgraph #nextjs15 #aceternity_ui #notebooklm


==================================
🧠 By: https://t.iss.one/DataScienceM
πŸ”₯ Trending Repository: mcp-context-forge

πŸ“ Description: A Model Context Protocol (MCP) Gateway & Registry. Serves as a central management point for tools, resources, and prompts that can be accessed by MCP-compatible LLM applications. Converts REST API endpoints to MCP, composes virtual MCP servers with added security and observability, and converts between protocols (stdio, SSE, Streamable HTTP).

πŸ”— Repository URL: https://github.com/IBM/mcp-context-forge

🌐 Website: https://ibm.github.io/mcp-context-forge/

πŸ“– Readme: https://github.com/IBM/mcp-context-forge#readme

πŸ“Š Statistics:
🌟 Stars: 1.7K stars
πŸ‘€ Watchers: 21
🍴 Forks: 215 forks

πŸ’» Programming Languages: Python - HTML - JavaScript - Makefile - Go - Shell

🏷️ Related Topics:
#python #docker #kubernetes #devops #jwt #tools #ai #api_gateway #mcp #gateway #asyncio #federation #agents #observability #authentication_middleware #fastapi #prompt_engineering #generative_ai #llm_agents #model_context_protocol


==================================
🧠 By: https://t.iss.one/DataScienceM
πŸ”₯ Trending Repository: audiblez

πŸ“ Description: Generate audiobooks from e-books

πŸ”— Repository URL: https://github.com/santinic/audiblez

πŸ“– Readme: https://github.com/santinic/audiblez#readme

πŸ“Š Statistics:
🌟 Stars: 4.4K stars
πŸ‘€ Watchers: 28
🍴 Forks: 303 forks

πŸ’» Programming Languages: Python

🏷️ Related Topics:
#python #tts #epub #audiobooks #kokoro


==================================
🧠 By: https://t.iss.one/DataScienceM
πŸ”₯ Trending Repository: Python

πŸ“ Description: All Algorithms implemented in Python

πŸ”— Repository URL: https://github.com/TheAlgorithms/Python

🌐 Website: https://thealgorithms.github.io/Python/

πŸ“– Readme: https://github.com/TheAlgorithms/Python#readme

πŸ“Š Statistics:
🌟 Stars: 205K stars
πŸ‘€ Watchers: 6k
🍴 Forks: 47.5K forks

πŸ’» Programming Languages: Python

🏷️ Related Topics:
#python #education #algorithm #practice #interview #sorting_algorithms #learn #algos #algorithm_competitions #sorts #hacktoberfest #algorithms_implemented #community_driven #searches


==================================
🧠 By: https://t.iss.one/DataScienceM
πŸ”₯ Trending Repository: InvenTree

πŸ“ Description: Open Source Inventory Management System

πŸ”— Repository URL: https://github.com/inventree/InvenTree

🌐 Website: https://docs.inventree.org

πŸ“– Readme: https://github.com/inventree/InvenTree#readme

πŸ“Š Statistics:
🌟 Stars: 5.4K stars
πŸ‘€ Watchers: 72
🍴 Forks: 1K forks

πŸ’» Programming Languages: Python - TypeScript - HTML - Shell - Dockerfile - JavaScript

🏷️ Related Topics:
#python #django #hacktoberfest


==================================
🧠 By: https://t.iss.one/DataScienceM
❀1
πŸ”₯ Trending Repository: theHarvester

πŸ“ Description: E-mails, subdomains and names Harvester - OSINT

πŸ”— Repository URL: https://github.com/laramies/theHarvester

🌐 Website: https://www.edge-security.com/

πŸ“– Readme: https://github.com/laramies/theHarvester#readme

πŸ“Š Statistics:
🌟 Stars: 13.4K stars
πŸ‘€ Watchers: 319
🍴 Forks: 2.3K forks

πŸ’» Programming Languages: Python - Dockerfile

🏷️ Related Topics:
#python #osint #discovery #emails #recon #information_gathering #blueteam #reconnaissance #redteam #subdomain_enumeration


==================================
🧠 By: https://t.iss.one/DataScienceM
πŸ”₯ Trending Repository: LLMs-from-scratch

πŸ“ Description: Implement a ChatGPT-like LLM in PyTorch from scratch, step by step

πŸ”— Repository URL: https://github.com/rasbt/LLMs-from-scratch

🌐 Website: https://amzn.to/4fqvn0D

πŸ“– Readme: https://github.com/rasbt/LLMs-from-scratch#readme

πŸ“Š Statistics:
🌟 Stars: 68.3K stars
πŸ‘€ Watchers: 613
🍴 Forks: 9.6K forks

πŸ’» Programming Languages: Jupyter Notebook - Python

🏷️ Related Topics:
#python #machine_learning #ai #deep_learning #pytorch #artificial_intelligence #transformer #gpt #language_model #from_scratch #large_language_models #llm #chatgpt


==================================
🧠 By: https://t.iss.one/DataScienceM
πŸš€ 2025 FREE Study Recourses from SPOTO for y’all β€” Don’t Miss Out!
βœ… 100% Free Downloads
βœ… No signup / spam

πŸ“˜ #Python, Cybersecurity & Excel: https://bit.ly/4lYeVYp
πŸ“Š #Cloud Computing: https://bit.ly/45Rj1gm
☁️ #AI Kits: https://bit.ly/4m4bHTc
πŸ” #CCNA Courses: https://bit.ly/45TL7rm
🧠 Free Online Practice – Test Now: https://bit.ly/41Kurjr

September 8th to 21th, SPOTO launches the Lowest Price Ever on ALL products! πŸ”₯
Amazing Discounts for πŸ“Œ CCNA 200-301 πŸ“Œ CCNP 400-007 and more…
πŸ“² Contact admin to grab them: https://wa.link/uxde01
❀1
This media is not supported in your browser
VIEW IN TELEGRAM
This GitHub repository is a real treasure trove of free programming books.

Here you'll find hundreds of books on topics like #AI, #blockchain, app development, #game development, #Python #webdevelopment, #promptengineering, and many more βœ‹

GitHub: https://github.com/EbookFoundation/free-programming-books

https://t.iss.one/CodeProgrammer ⭐
Please open Telegram to view this post
VIEW IN TELEGRAM
In Python, handling CSV files is straightforward using the built-in csv module for reading and writing tabular data, or pandas for advanced analysisβ€”essential for data processing tasks like importing/exporting datasets in interviews.

# Reading CSV with csv module (basic)
import csv
with open('data.csv', 'r') as file:
reader = csv.reader(file)
data = list(reader) # data = [['Name', 'Age'], ['Alice', '30'], ['Bob', '25']]

# Writing CSV with csv module
import csv
with open('output.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['Name', 'Age']) # Header
writer.writerows([['Alice', 30], ['Bob', 25]]) # Data rows

# Advanced: Reading with pandas (handles headers, missing values)
import pandas as pd
df = pd.read_csv('data.csv') # df = DataFrame with columns 'Name', 'Age'
print(df.head()) # Output: First 5 rows preview

# Writing with pandas
df.to_csv('output.csv', index=False) # Saves without row indices


#python #csv #pandas #datahandling #fileio #interviewtips

πŸ‘‰ @DataScience4
# Real-World Case Study: E-commerce Product Pipeline
import boto3
from PIL import Image
import io

def process_product_image(s3_bucket, s3_key):
# 1. Download from S3
s3 = boto3.client('s3')
response = s3.get_object(Bucket=s3_bucket, Key=s3_key)
img = Image.open(io.BytesIO(response['Body'].read()))

# 2. Standardize dimensions
img = img.convert("RGB")
img = img.resize((1200, 1200), Image.LANCZOS)

# 3. Remove background (simplified)
# In practice: use rembg or AWS Rekognition
img = remove_background(img)

# 4. Generate variants
variants = {
"web": img.resize((800, 800)),
"mobile": img.resize((400, 400)),
"thumbnail": img.resize((100, 100))
}

# 5. Upload to CDN
for name, variant in variants.items():
buffer = io.BytesIO()
variant.save(buffer, "JPEG", quality=95)
s3.upload_fileobj(
buffer,
"cdn-bucket",
f"products/{s3_key.split('/')[-1].split('.')[0]}_{name}.jpg",
ExtraArgs={'ContentType': 'image/jpeg', 'CacheControl': 'max-age=31536000'}
)

# 6. Generate WebP version
webp_buffer = io.BytesIO()
img.save(webp_buffer, "WEBP", quality=85)
s3.upload_fileobj(webp_buffer, "cdn-bucket", f"products/{s3_key.split('/')[-1].split('.')[0]}.webp")

process_product_image("user-uploads", "products/summer_dress.jpg")


By: @DataScienceM πŸ‘

#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
❀1
In Python, building AI-powered Telegram bots unlocks massive potential for image generation, processing, and automationβ€”master this to create viral tools and ace full-stack interviews! πŸ€–

# Basic Bot Setup - The foundation (PTB v20+ Async)
from telegram.ext import Application, CommandHandler, MessageHandler, filters

async def start(update, context):
await update.message.reply_text(
"✨ AI Image Bot Active!\n"
"/generate - Create images from text\n"
"/enhance - Improve photo quality\n"
"/help - Full command list"
)

app = Application.builder().token("YOUR_BOT_TOKEN").build()
app.add_handler(CommandHandler("start", start))
app.run_polling()


# Image Generation - DALL-E Integration (OpenAI)
import openai
from telegram.ext import ContextTypes

openai.api_key = os.getenv("OPENAI_API_KEY")

async def generate(update: Update, context: ContextTypes.DEFAULT_TYPE):
if not context.args:
await update.message.reply_text("❌ Usage: /generate cute robot astronaut")
return

prompt = " ".join(context.args)
try:
response = openai.Image.create(
prompt=prompt,
n=1,
size="1024x1024"
)
await update.message.reply_photo(
photo=response['data'][0]['url'],
caption=f"🎨 Generated: *{prompt}*",
parse_mode="Markdown"
)
except Exception as e:
await update.message.reply_text(f"πŸ”₯ Error: {str(e)}")

app.add_handler(CommandHandler("generate", generate))


Learn more: https://hackmd.io/@husseinsheikho/building-AI-powered-Telegram-bots

#Python #TelegramBot #AI #ImageGeneration #StableDiffusion #OpenAI #MachineLearning #CodingInterview #FullStack #Chatbots #DeepLearning #ComputerVision #Programming #TechJobs #DeveloperTips #CareerGrowth #CloudComputing #Docker #APIs #Python3 #Productivity #TechTips


https://t.iss.one/DataScienceM 🦾
Please open Telegram to view this post
VIEW IN TELEGRAM
❀1
πŸ’‘ Building a Simple Convolutional Neural Network (CNN)

Constructing a basic Convolutional Neural Network (CNN) is a fundamental step in deep learning for image processing. Using TensorFlow's Keras API, we can define a network with convolutional, pooling, and dense layers to classify images. This example sets up a simple CNN to recognize handwritten digits from the MNIST dataset.

import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
import numpy as np

# 1. Load and preprocess the MNIST dataset
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Reshape images for CNN: (batch_size, height, width, channels)
# MNIST images are 28x28 grayscale, so channels = 1
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255

# 2. Define the CNN architecture
model = models.Sequential()

# First Convolutional Block
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))

# Second Convolutional Block
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))

# Flatten the 3D output to 1D for the Dense layers
model.add(layers.Flatten())

# Dense (fully connected) layers
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax')) # Output layer for 10 classes (digits 0-9)

# 3. Compile the model
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

# Print a summary of the model layers
model.summary()

# 4. Train the model (uncomment to run training)
# print("\nTraining the model...")
# model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_split=0.1)

# 5. Evaluate the model (uncomment to run evaluation)
# print("\nEvaluating the model...")
# test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
# print(f"Test accuracy: {test_acc:.4f}")


Code explanation: This script defines a simple CNN using Keras. It loads and normalizes MNIST images. The Sequential model adds Conv2D layers for feature extraction, MaxPooling2D for downsampling, a Flatten layer to transition to 1D, and Dense layers for classification. The model is then compiled with an optimizer, loss function, and metrics, and a summary of its architecture is printed. Training and evaluation steps are included as commented-out examples.

#Python #DeepLearning #CNN #Keras #TensorFlow

━━━━━━━━━━━━━━━
By: @DataScienceM ✨
πŸ’‘ Python: Simple K-Means Clustering Project

K-Means is a popular unsupervised machine learning algorithm used to partition n observations into k clusters, where each observation belongs to the cluster with the nearest mean (centroid). This simple project demonstrates K-Means on the classic Iris dataset using scikit-learn to group similar flower species based on their measurements.

import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import numpy as np

# 1. Load the Iris dataset
iris = load_iris()
X = iris.data # Features (sepal length, sepal width, petal length, petal width)
y = iris.target # True labels (0, 1, 2 for different species) - not used by KMeans

# 2. (Optional but recommended) Scale the features
# K-Means is sensitive to the scale of features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 3. Define and train the K-Means model
# We know there are 3 species in Iris, so we set n_clusters=3
kmeans = KMeans(n_clusters=3, random_state=42, n_init=10) # n_init is important for robust results
kmeans.fit(X_scaled)

# 4. Get the cluster assignments for each data point
labels = kmeans.labels_

# 5. Get the coordinates of the cluster centroids
centroids = kmeans.cluster_centers_

# 6. Visualize the clusters (using first two features for simplicity)
plt.figure(figsize=(8, 6))

# Plot each cluster
colors = ['red', 'green', 'blue']
for i in range(3):
plt.scatter(X_scaled[labels == i, 0], X_scaled[labels == i, 1],
s=50, c=colors[i], label=f'Cluster {i+1}', alpha=0.7)

# Plot the centroids
plt.scatter(centroids[:, 0], centroids[:, 1],
s=200, marker='X', c='black', label='Centroids', edgecolor='white')

plt.title('K-Means Clustering on Iris Dataset (Scaled Features)')
plt.xlabel('Scaled Sepal Length')
plt.ylabel('Scaled Sepal Width')
plt.legend()
plt.grid(True)
plt.show()

# You can also compare with true labels (for evaluation, not part of clustering process itself)
# print("True labels:", y)
# print("K-Means labels:", labels)


Code explanation: This script loads the Iris dataset, scales its features using StandardScaler, and then applies KMeans to group the data into 3 clusters. It visualizes the resulting clusters and their centroids using a scatter plot with the first two scaled features.

#Python #MachineLearning #KMeans #Clustering #DataScience

━━━━━━━━━━━━━━━
By: @DataScienceM ✨
πŸ€–πŸ§  Reflex: Build Full-Stack Web Apps in Pure Python β€” Fast, Flexible and Powerful

πŸ—“οΈ 29 Oct 2025
πŸ“š AI News & Trends

Building modern web applications has traditionally required mastering multiple languages and frameworks from JavaScript for the frontend to Python, Java or Node.js for the backend. For many developers, switching between different technologies can slow down productivity and increase complexity. Reflex eliminates that problem. It is an innovative open-source full-stack web framework that allows developers to ...

#Reflex #FullStack #WebDevelopment #Python #OpenSource #WebApps
πŸ’‘ Pandas Cheatsheet

A quick guide to essential Pandas operations for data manipulation, focusing on creating, selecting, filtering, and grouping data in a DataFrame.

1. Creating a DataFrame
The primary data structure in Pandas is the DataFrame. It's often created from a dictionary.
import pandas as pd

data = {'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 32, 28],
'City': ['New York', 'Paris', 'New York']}
df = pd.DataFrame(data)

print(df)
# Name Age City
# 0 Alice 25 New York
# 1 Bob 32 Paris
# 2 Charlie 28 New York

β€’ A dictionary is defined where keys become column names and values become the data in those columns. pd.DataFrame() converts it into a tabular structure.

2. Selecting Data with .loc and .iloc
Use .loc for label-based selection and .iloc for integer-position based selection.
# Select the first row by its integer position (0)
print(df.iloc[0])

# Select the row with index label 1 and only the 'Name' column
print(df.loc[1, 'Name'])

# Output for df.iloc[0]:
# Name Alice
# Age 25
# City New York
# Name: 0, dtype: object
#
# Output for df.loc[1, 'Name']:
# Bob

β€’ .iloc[0] gets all data from the row at index position 0.
β€’ .loc[1, 'Name'] gets the data at the intersection of index label 1 and column label 'Name'.

3. Filtering Data
Select subsets of data based on conditions.
# Select rows where Age is greater than 27
filtered_df = df[df['Age'] > 27]
print(filtered_df)
# Name Age City
# 1 Bob 32 Paris
# 2 Charlie 28 New York

β€’ The expression df['Age'] > 27 creates a boolean Series (True/False).
β€’ Using this Series as an index df[...] returns only the rows where the value was True.

4. Grouping and Aggregating
The "group by" operation involves splitting data into groups, applying a function, and combining the results.
# Group by 'City' and calculate the mean age for each city
city_ages = df.groupby('City')['Age'].mean()
print(city_ages)
# City
# New York 26.5
# Paris 32.0
# Name: Age, dtype: float64

β€’ .groupby('City') splits the DataFrame into groups based on unique city values.
β€’ ['Age'].mean() then calculates the mean of the 'Age' column for each of these groups.

#Python #Pandas #DataAnalysis #DataScience #Programming

━━━━━━━━━━━━━━━
By: @DataScienceM ✨
❀1
πŸ’‘ SciPy: Scientific Computing in Python

SciPy is a fundamental library for scientific and technical computing in Python. Built on NumPy, it provides a wide range of user-friendly and efficient numerical routines for tasks like optimization, integration, linear algebra, and statistics.

import numpy as np
from scipy.optimize import minimize

# Define a function to minimize: f(x) = (x - 3)^2
def f(x):
return (x - 3)**2

# Find the minimum of the function with an initial guess
res = minimize(f, x0=0)

print(f"Minimum found at x = {res.x[0]:.4f}")
# Output:
# Minimum found at x = 3.0000

β€’ Optimization: scipy.optimize.minimize is used to find the minimum value of a function.
β€’ We provide the function (f) and an initial guess (x0=0).
β€’ The result object (res) contains the solution in the .x attribute.

from scipy.integrate import quad

# Define the function to integrate: f(x) = sin(x)
def integrand(x):
return np.sin(x)

# Integrate sin(x) from 0 to pi
result, error = quad(integrand, 0, np.pi)

print(f"Integral result: {result:.4f}")
print(f"Estimated error: {error:.2e}")
# Output:
# Integral result: 2.0000
# Estimated error: 2.22e-14

β€’ Numerical Integration: scipy.integrate.quad calculates the definite integral of a function over a given interval.
β€’ It returns a tuple containing the integral result and an estimate of the absolute error.

from scipy.linalg import solve

# Solve the linear system Ax = b
# 3x + 2y = 12
# x - y = 1

A = np.array([[3, 2], [1, -1]])
b = np.array([12, 1])

solution = solve(A, b)
print(f"Solution (x, y): {solution}")
# Output:
# Solution (x, y): [2.8 1.8]

β€’ Linear Algebra: scipy.linalg provides more advanced linear algebra routines than NumPy.
β€’ solve(A, b) efficiently finds the solution vector x for a system of linear equations defined by a matrix A and a vector b.

from scipy import stats

# Create two independent samples
sample1 = np.random.normal(loc=5, scale=2, size=100)
sample2 = np.random.normal(loc=5.5, scale=2, size=100)

# Perform an independent t-test
t_stat, p_value = stats.ttest_ind(sample1, sample2)

print(f"T-statistic: {t_stat:.4f}")
print(f"P-value: {p_value:.4f}")
# Output (will vary):
# T-statistic: -1.7432
# P-value: 0.0829

β€’ Statistics: scipy.stats is a powerful module for statistical analysis.
β€’ ttest_ind calculates the T-test for the means of two independent samples.
β€’ The p-value helps determine if the difference between sample means is statistically significant (a low p-value, e.g., < 0.05, suggests it is).

#SciPy #Python #DataScience #ScientificComputing #Statistics

━━━━━━━━━━━━━━━
By: @DataScienceM ✨
❀3