Data Science Machine Learning Data Analysis
37.3K subscribers
1.45K photos
28 videos
39 files
1.25K links
This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning

Cross promotion and ads: @hussein_sheikho
Download Telegram
๐Ÿ“˜ Ultimate Guide to Graph Neural Networks (GNNs): Part 1 โ€” Foundations of Graph Theory & Why GNNs Revolutionize AI

Duration: ~45 minutes reading time | Comprehensive beginner-to-advanced introduction

Let's start: https://hackmd.io/@husseinsheikho/GNN-1

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #NodeClassification #LinkPrediction #GraphRepresentation #AIforBeginners #AdvancedAI
๏ปฟ
โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ“˜ Ultimate Guide to Graph Neural Networks (GNNs): Part 2 โ€” The Message Passing Framework: Mathematical Heart of All GNNs

Duration: ~60 minutes reading time | Comprehensive deep dive into the core mechanism powering modern GNNs

Let's study: https://hackmd.io/@husseinsheikho/GNN-2

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #MessagePassing #GraphAlgorithms #NodeClassification #LinkPrediction #GraphRepresentation #AIforBeginners #AdvancedAI

โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3๐Ÿคฉ1
๐Ÿ“• Ultimate Guide to Graph Neural Networks (GNNs): Part 3 โ€” Advanced GNN Architectures: Transformers, Temporal Networks & Geometric Deep Learning

Duration: ~60 minutes reading time | Comprehensive deep dive into cutting-edge GNN architectures

๐Ÿ†˜ Read: https://hackmd.io/@husseinsheikho/GNN-3

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #GraphTransformers #TemporalGNNs #GeometricDeepLearning #AdvancedGNNs #AIforBeginners #AdvancedAI


โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ“˜ Ultimate Guide to Graph Neural Networks (GNNs): Part 4 โ€” GNN Training Dynamics, Optimization Challenges, and Scalability Solutions

Duration: ~45 minutes reading time | Comprehensive guide to training GNNs effectively at scale

Part 4-A: https://hackmd.io/@husseinsheikho/GNN4-A

Part4-B: https://hackmd.io/@husseinsheikho/GNN4-B

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #GNNOptimization #ScalableGNNs #TrainingDynamics #AIforBeginners #AdvancedAI


โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4๐Ÿ‘Ž1
๐Ÿ“˜ Ultimate Guide to Graph Neural Networks (GNNs): Part 5 โ€” GNN Applications Across Domains: Real-World Impact in 30 Minutes

Duration: ~30 minutes reading time | Practical guide to GNN applications with concrete ROI metrics

Link: https://hackmd.io/@husseinsheikho/GNN-5

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #RealWorldApplications #HealthcareAI #FinTech #DrugDiscovery #RecommendationSystems #ClimateAI

โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4
๐Ÿ“˜ Ultimate Guide to Graph Neural Networks (GNNs): Part 6 โ€” Advanced Frontiers, Ethics, and Future Directions

Duration: ~50 minutes reading time | Cutting-edge insights on where GNNs are headed

Let's read: https://hackmd.io/@husseinsheikho/GNN-6

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #FutureOfGNNs #EmergingResearch #EthicalAI #GNNBestPractices #AdvancedAI #50MinuteRead

โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4
๐Ÿ“˜ Ultimate Guide to Graph Neural Networks (GNNs): Part 7 โ€” Advanced Implementation, Multimodal Integration, and Scientific Applications

Duration: ~60 minutes reading time | Deep dive into cutting-edge GNN implementations and applications

Read: https://hackmd.io/@husseinsheikho/GNN7

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #AdvancedGNNs #MultimodalLearning #ScientificAI #GNNImplementation #60MinuteRead

โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2
This media is not supported in your browser
VIEW IN TELEGRAM
๐Ÿฅ‡ This repo is like gold for every data scientist!

โœ… Just open your browser; a ton of interactive exercises and real experiences await you. Any question about statistics, probability, Python, or machine learning, you'll get the answer right there! With code, charts, even animations. This way, you don't waste time, and what you learn really sticks in your mind!

โฌ…๏ธ Data science statistics and probability topics
โฌ…๏ธ Clustering
โฌ…๏ธ Principal Component Analysis (PCA)
โฌ…๏ธ Bagging and Boosting techniques
โฌ…๏ธ Linear regression
โฌ…๏ธ Neural networks and more...


โ”Œ ๐Ÿ“‚ Int Data Science Python Dash
โ””
๐Ÿฑ GitHub-Repos

๐Ÿ‘‰ @codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค6
๐ƒ๐š๐ญ๐š ๐‚๐ฅ๐ž๐š๐ง๐ข๐ง๐  ๐ข๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง: ๐Ÿ๐Ÿ’ ๐Œ๐ฎ๐ฌ๐ญ-๐Š๐ง๐จ๐ฐ ๐’๐ญ๐ž๐ฉ๐ฌ ๐Ÿ (Pandas)

https://t.iss.one/DataScienceM โœ…
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2
DS INTERVIEW.pdf
16.6 MB
800+ Data Science Interview Questions โ€“ A Must-Have Resource for Every Aspirant

Breaking into the data science field is challengingโ€”not because of a lack of opportunities, but because of how thoroughly you need to prepare.

This document, curated by Steve Nouri, is a goldmine of 800+ real-world interview questions covering:
-Statistics
-Data Science Fundamentals
-Data Analysis
-Machine Learning
-Deep Learning
-Python & R
-Model Evaluation & Optimization
-Deployment Strategies
โ€ฆand much more!

https://t.iss.one/CodeProgrammer ๐Ÿ”ฐ
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘5
๐ŸŽโณThese 6 steps make every future post on LLMs instantly clear and meaningful.

Learn exactly where Web Scraping, Tokenization, RLHF, Transformer Architectures, ONNX Optimization, Causal Language Modeling, Gradient Clipping, Adaptive Learning, Supervised Fine-Tuning, RLAIF, TensorRT Inference, and more fit into the LLM pipeline.

๏นŒ๏นŒ๏นŒ๏นŒ๏นŒ๏นŒ๏นŒ๏นŒ๏นŒ

ใ€‹ ๐—•๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐—Ÿ๐—Ÿ๐— ๐˜€: ๐—ง๐—ต๐—ฒ ๐Ÿฒ ๐—˜๐˜€๐˜€๐—ฒ๐—ป๐˜๐—ถ๐—ฎ๐—น ๐—ฆ๐˜๐—ฒ๐—ฝ๐˜€

โœธ 1๏ธโƒฃ Data Collection (Web Scraping & Curation)

โ˜† Web Scraping: Gather data from books, research papers, Wikipedia, GitHub, Reddit, and more using Scrapy, BeautifulSoup, Selenium, and APIs.

โ˜† Filtering & Cleaning: Remove duplicates, spam, broken HTML, and filter biased, copyrighted, or inappropriate content.

โ˜† Dataset Structuring: Tokenize text using BPE, SentencePiece, or Unigram; add metadata like source, timestamp, and quality rating.

โœธ 2๏ธโƒฃ Preprocessing & Tokenization

โ˜† Tokenization: Convert text into numerical tokens using SentencePiece or GPTโ€™s BPE tokenizer.

โ˜† Data Formatting: Structure datasets into JSON, TFRecord, or Hugging Face formats; use Sharding for parallel processing.

โœธ 3๏ธโƒฃ Model Architecture & Pretraining

โ˜† Architecture Selection: Choose a Transformer-based model (GPT, T5, LLaMA, Falcon) and define parameter size (7Bโ€“175B).

โ˜† Compute & Infrastructure: Train on GPUs/TPUs (A100, H100, TPU v4/v5) with PyTorch, JAX, DeepSpeed, and Megatron-LM.

โ˜† Pretraining: Use Causal Language Modeling (CLM) with Cross-Entropy Loss, Gradient Checkpointing, and Parallelization (FSDP, ZeRO).

โ˜† Optimizations: Apply Mixed Precision (FP16/BF16), Gradient Clipping, and Adaptive Learning Rate Schedulers for efficiency.

โœธ 4๏ธโƒฃ Model Alignment (Fine-Tuning & RLHF)

โ˜† Supervised Fine-Tuning (SFT): Train on high-quality human-annotated datasets (InstructGPT, Alpaca, Dolly).

โ˜† Reinforcement Learning from Human Feedback (RLHF): Generate responses, rank outputs, train a Reward Model (PPO), and refine using Proximal Policy Optimization (PPO).

โ˜† Safety & Constitutional AI: Apply RLAIF, adversarial training, and bias filtering.

โœธ 5๏ธโƒฃ Deployment & Optimization

โ˜† Compression & Quantization: Reduce model size with GPTQ, AWQ, LLM.int8(), and Knowledge Distillation.

โ˜† API Serving & Scaling: Deploy with vLLM, Triton Inference Server, TensorRT, ONNX, and Ray Serve for efficient inference.

โ˜† Monitoring & Continuous Learning: Track performance, latency, and hallucinations;

โœธ 6๏ธโƒฃEvaluation & Benchmarking

โ˜† Performance Testing: Validate using HumanEval, HELM, OpenAI Eval, MMLU, ARC, and MT-Bench.
โ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃ

https://t.iss.one/DataScienceM โญ๏ธ
Please open Telegram to view this post
VIEW IN TELEGRAM
โค5
Please open Telegram to view this post
VIEW IN TELEGRAM
โค1
โ€œLearn AIโ€ is everywhere. But where do the builders actually start?
Hereโ€™s the real path, the courses, papers and repos that matter.


โœ… Videos:

Everything here โ‡’ https://lnkd.in/ePfB8_rk

โžก๏ธ LLM Introduction โ†’ https://lnkd.in/ernZFpvB
โžก๏ธ LLMs from Scratch - Stanford CS229 โ†’ https://lnkd.in/etUh6_mn
โžก๏ธ Agentic AI Overview โ†’https://lnkd.in/ecpmzAyq
โžก๏ธ Building and Evaluating Agents โ†’ https://lnkd.in/e5KFeZGW
โžก๏ธ Building Effective Agents โ†’ https://lnkd.in/eqxvBg79
โžก๏ธ Building Agents with MCP โ†’ https://lnkd.in/eZd2ym2K
โžก๏ธ Building an Agent from Scratch โ†’ https://lnkd.in/eiZahJGn

โœ… Courses:

All Courses here โ‡’ https://lnkd.in/eKKs9ves

โžก๏ธ HuggingFace's Agent Course โ†’ https://lnkd.in/e7dUTYuE
โžก๏ธ MCP with Anthropic โ†’ https://lnkd.in/eMEnkCPP
โžก๏ธ Building Vector DB with Pinecone โ†’ https://lnkd.in/eP2tMGVs
โžก๏ธ Vector DB from Embeddings to Apps โ†’ https://lnkd.in/eP2tMGVs
โžก๏ธ Agent Memory โ†’ https://lnkd.in/egC8h9_Z
โžก๏ธ Building and Evaluating RAG apps โ†’ https://lnkd.in/ewy3sApa
โžก๏ธ Building Browser Agents โ†’ https://lnkd.in/ewy3sApa
โžก๏ธ LLMOps โ†’ https://lnkd.in/ex4xnE8t
โžก๏ธ Evaluating AI Agents โ†’ https://lnkd.in/eBkTNTGW
โžก๏ธ Computer Use with Anthropic โ†’ https://lnkd.in/ebHUc-ZU
โžก๏ธ Multi-Agent Use โ†’ https://lnkd.in/e4f4HtkR
โžก๏ธ Improving LLM Accuracy โ†’ https://lnkd.in/eVUXGT4M
โžก๏ธ Agent Design Patterns โ†’ https://lnkd.in/euhUq3W9
โžก๏ธ Multi Agent Systems โ†’ https://lnkd.in/evBnavk9

โœ… Guides:

Access all โ‡’ https://lnkd.in/e-GA-HRh

โžก๏ธ Google's Agent โ†’ https://lnkd.in/encAzwKf
โžก๏ธ Google's Agent Companion โ†’ https://lnkd.in/e3-XtYKg
โžก๏ธ Building Effective Agents by Anthropic โ†’ https://lnkd.in/egifJ_wJ
โžก๏ธ Claude Code Best practices โ†’ https://lnkd.in/eJnqfQju
โžก๏ธ OpenAI's Practical Guide to Building Agents โ†’ https://lnkd.in/e-GA-HRh

โœ… Repos:
โžก๏ธ GenAI Agents โ†’ https://lnkd.in/eAscvs_i
โžก๏ธ Microsoft's AI Agents for Beginners โ†’ https://lnkd.in/d59MVgic
โžก๏ธ Prompt Engineering Guide โ†’ https://lnkd.in/ewsbFwrP
โžก๏ธ AI Agent Papers โ†’ https://lnkd.in/esMHrxJX

โœ… Papers:
๐ŸŸก ReAct โ†’ https://lnkd.in/eZ-Z-WFb
๐ŸŸก Generative Agents โ†’ https://lnkd.in/eDAeSEAq
๐ŸŸก Toolformer โ†’ https://lnkd.in/e_Vcz5K9
๐ŸŸก Chain-of-Thought Prompting โ†’ https://lnkd.in/eRCT_Xwq
๐ŸŸก Tree of Thoughts โ†’ https://lnkd.in/eiadYm8S
๐ŸŸก Reflexion โ†’ https://lnkd.in/eggND2rZ
๐ŸŸก Retrieval-Augmented Generation Survey โ†’ https://lnkd.in/eARbqdYE

Access all โ‡’ https://lnkd.in/e-GA-HRh

By: https://t.iss.one/CodeProgrammer ๐ŸŸก
Please open Telegram to view this post
VIEW IN TELEGRAM
โค1
GoogLeNet (Inception v1) .pdf
5 MB
๐Ÿš€ Just Built GoogLeNet (Inception v1) From Scratch Using TensorFlow! ๐Ÿง 

1.Inception Module: Naรฏve vs. Dimension-Reduced Versions
a) Naรฏve Inception Module
โ€ข Applies four parallel operations directly to the input from the previous layer:
โ€ข 1x1 convolutions
โ€ข 3x3 convolutions
โ€ข 5x5 convolutions
โ€ข 3x3 max pooling
โ€ข Outputs of all four are concatenated along the depth axis for the next layer.
b) Dimension-Reduced Inception Module
โ€ข Enhances efficiency by adding 1x1 convolutions (โ€œbottleneck layersโ€) before the heavier 3x3 and 5x5 convolutions and after the pooling branch.
โ€ข These 1x1 convolutions reduce feature dimensionality, decreasing computation and parameter count without losing representational power.
2. Stacked Modules and Network Structure
GoogLeNet stacks multiple Inception modules with dimension reduction, interleaved with standard convolutional and pooling layers. Its architecture can be visualized as a deep stack of these modules, providing both breadth (parallel multi-scale processing) and depth (repetitive stacking).
Key Elements:
โ€ข Initial โ€œstemโ€ layers: Traditional convolutions with larger filters (e.g., 7x7, 3x3) and max-pooling for early spatial reduction.
โ€ข Series of Inception modules: Each accepts the preceding layerโ€™s output and applies parallel paths with 1x1, 3x3, 5x5 convolutions, and max-pooling, with dimension reduction.
โ€ข MaxPooling between certain groups to downsample spatial resolution.
โ€ข Two auxiliary classifiers (added during training, removed for inference) are inserted mid-network to encourage better gradient flow, combat vanishing gradients, and provide deep supervision.
โ€ข Final layers: Global average pooling, dropout for regularization, and a dense (softmax) classifier for the main output.
3. Auxiliary Classifiers
โ€ข Purpose: Deliver additional gradient signal deep into the network, helping train very deep architectures.
โ€ข Structure: Each consists of an average pooling, 1x1 convolution, flattening, dense layers, dropout, and a softmax output.
4. Implementation Highlights
โ€ข Efficient Multi-Branch Design: By combining filters of different sizes, the model robustly captures both fine and coarse image features.
โ€ข Parameter-saving Tricks: 1x1 convolutions before expensive layers drastically cut computational cost.
โ€ข Deep Supervision: Auxiliary classifiers support gradient propagation.
GitHub:[https://lnkd.in/gJGsYkFk]


https://t.iss.one/DataScienceM ๐Ÿ‘ฉโ€๐Ÿ’ป
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4๐Ÿ‘1