๐ Ultimate Guide to Graph Neural Networks (GNNs): Part 1 โ Foundations of Graph Theory & Why GNNs Revolutionize AI
Duration: ~45 minutes reading time | Comprehensive beginner-to-advanced introduction
Let's start: https://hackmd.io/@husseinsheikho/GNN-1
Duration: ~45 minutes reading time | Comprehensive beginner-to-advanced introduction
Let's start: https://hackmd.io/@husseinsheikho/GNN-1
#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #NodeClassification #LinkPrediction #GraphRepresentation #AIforBeginners #AdvancedAI๏ปฟ
โ๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐ Ultimate Guide to Graph Neural Networks (GNNs): Part 2 โ The Message Passing Framework: Mathematical Heart of All GNNs
Duration: ~60 minutes reading time | Comprehensive deep dive into the core mechanism powering modern GNNs
Let's study: https://hackmd.io/@husseinsheikho/GNN-2
Duration: ~60 minutes reading time | Comprehensive deep dive into the core mechanism powering modern GNNs
Let's study: https://hackmd.io/@husseinsheikho/GNN-2
#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #MessagePassing #GraphAlgorithms #NodeClassification #LinkPrediction #GraphRepresentation #AIforBeginners #AdvancedAI
โ๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3๐คฉ1
Duration: ~60 minutes reading time | Comprehensive deep dive into cutting-edge GNN architectures
#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #GraphTransformers #TemporalGNNs #GeometricDeepLearning #AdvancedGNNs #AIforBeginners #AdvancedAI
โ๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐ Ultimate Guide to Graph Neural Networks (GNNs): Part 4 โ GNN Training Dynamics, Optimization Challenges, and Scalability Solutions
Duration: ~45 minutes reading time | Comprehensive guide to training GNNs effectively at scale
Part 4-A: https://hackmd.io/@husseinsheikho/GNN4-A
Part4-B: https://hackmd.io/@husseinsheikho/GNN4-B
Duration: ~45 minutes reading time | Comprehensive guide to training GNNs effectively at scale
Part 4-A: https://hackmd.io/@husseinsheikho/GNN4-A
Part4-B: https://hackmd.io/@husseinsheikho/GNN4-B
#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #GNNOptimization #ScalableGNNs #TrainingDynamics #AIforBeginners #AdvancedAI
โ๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4๐1
๐ Ultimate Guide to Graph Neural Networks (GNNs): Part 5 โ GNN Applications Across Domains: Real-World Impact in 30 Minutes
Duration: ~30 minutes reading time | Practical guide to GNN applications with concrete ROI metrics
Link: https://hackmd.io/@husseinsheikho/GNN-5
Duration: ~30 minutes reading time | Practical guide to GNN applications with concrete ROI metrics
Link: https://hackmd.io/@husseinsheikho/GNN-5
#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #RealWorldApplications #HealthcareAI #FinTech #DrugDiscovery #RecommendationSystems #ClimateAI
โ๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4
๐ Ultimate Guide to Graph Neural Networks (GNNs): Part 6 โ Advanced Frontiers, Ethics, and Future Directions
Duration: ~50 minutes reading time | Cutting-edge insights on where GNNs are headed
Let's read: https://hackmd.io/@husseinsheikho/GNN-6
Duration: ~50 minutes reading time | Cutting-edge insights on where GNNs are headed
Let's read: https://hackmd.io/@husseinsheikho/GNN-6
#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #FutureOfGNNs #EmergingResearch #EthicalAI #GNNBestPractices #AdvancedAI #50MinuteRead
โ๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4
๐ Ultimate Guide to Graph Neural Networks (GNNs): Part 7 โ Advanced Implementation, Multimodal Integration, and Scientific Applications
Duration: ~60 minutes reading time | Deep dive into cutting-edge GNN implementations and applications
Read: https://hackmd.io/@husseinsheikho/GNN7
โ๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
Duration: ~60 minutes reading time | Deep dive into cutting-edge GNN implementations and applications
Read: https://hackmd.io/@husseinsheikho/GNN7
#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #AdvancedGNNs #MultimodalLearning #ScientificAI #GNNImplementation #60MinuteRead
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2
PyTorch Masterclass: Part 1 โ Foundations of Deep Learning with PyTorch
Duration: ~120 minutes
Link: https://hackmd.io/@husseinsheikho/pytorch-1
https://t.iss.one/DataScienceM๐ฐ
Duration: ~120 minutes
Link: https://hackmd.io/@husseinsheikho/pytorch-1
#PyTorch #DeepLearning #MachineLearning #AI #NeuralNetworks #DataScience #Python #Tensors #Autograd #Backpropagation #GradientDescent #AIForBeginners #PyTorchTutorial #MachineLearningEngineer
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค7
PyTorch Masterclass: Part 2 โ Deep Learning for Computer Vision with PyTorch
Duration: ~60 minutes
Link: https://hackmd.io/@husseinsheikho/pytorch-2
https://t.iss.one/DataScienceM๐ฏ
Duration: ~60 minutes
Link: https://hackmd.io/@husseinsheikho/pytorch-2
#PyTorch #ComputerVision #CNN #DeepLearning #TransferLearning #CIFAR10 #ImageClassification #DataLoaders #Transforms #ResNet #EfficientNet #PyTorchVision #AI #MachineLearning #ConvolutionalNeuralNetworks #DataAugmentation #PretrainedModels
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค7
Forwarded from Python | Machine Learning | Coding | R
This media is not supported in your browser
VIEW IN TELEGRAM
โ
โ
Please open Telegram to view this post
VIEW IN TELEGRAM
โค6
PyTorch Masterclass: Part 3 โ Deep Learning for Natural Language Processing with PyTorch
Duration: ~120 minutes
Link A: https://hackmd.io/@husseinsheikho/pytorch-3a
Link B: https://hackmd.io/@husseinsheikho/pytorch-3b
https://t.iss.one/DataScienceMโ ๏ธ
Duration: ~120 minutes
Link A: https://hackmd.io/@husseinsheikho/pytorch-3a
Link B: https://hackmd.io/@husseinsheikho/pytorch-3b
#PyTorch #NLP #RNN #LSTM #GRU #Transformers #Attention #NaturalLanguageProcessing #TextClassification #SentimentAnalysis #WordEmbeddings #DeepLearning #MachineLearning #AI #SequenceModeling #BERT #GPT #TextProcessing #PyTorchNLP
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2
๐๐๐ญ๐ ๐๐ฅ๐๐๐ง๐ข๐ง๐ ๐ข๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง: ๐๐ ๐๐ฎ๐ฌ๐ญ-๐๐ง๐จ๐ฐ ๐๐ญ๐๐ฉ๐ฌ ๐ (Pandas)
https://t.iss.one/DataScienceMโ
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2
DS INTERVIEW.pdf
16.6 MB
800+ Data Science Interview Questions โ A Must-Have Resource for Every Aspirant
Breaking into the data science field is challengingโnot because of a lack of opportunities, but because of how thoroughly you need to prepare.
This document, curated by Steve Nouri, is a goldmine of 800+ real-world interview questions covering:
https://t.iss.one/CodeProgrammer๐ฐ
Breaking into the data science field is challengingโnot because of a lack of opportunities, but because of how thoroughly you need to prepare.
This document, curated by Steve Nouri, is a goldmine of 800+ real-world interview questions covering:
-Statistics
-Data Science Fundamentals
-Data Analysis
-Machine Learning
-Deep Learning
-Python & R
-Model Evaluation & Optimization
-Deployment Strategies
โฆand much more!
https://t.iss.one/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
๐5
PyTorch Masterclass: Part 4 โ Generative Models with PyTorch
Duration: ~120 minutes
Link A: https://hackmd.io/@husseinsheikho/pytorch-4A
Link B: https://hackmd.io/@husseinsheikho/pytorch-4B
https://t.iss.one/DataScienceM๐
Duration: ~120 minutes
Link A: https://hackmd.io/@husseinsheikho/pytorch-4A
Link B: https://hackmd.io/@husseinsheikho/pytorch-4B
#PyTorch #GenerativeAI #GANs #VAEs #DiffusionModels #Autoencoders #TextToImage #DeepLearning #MachineLearning #AI #GenerativeAdversarialNetworks #VariationalAutoencoders #StableDiffusion #DALLE #ImageGeneration #MusicGeneration #AudioSynthesis #LatentSpace #PyTorchGenerative
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค1
๐โณThese 6 steps make every future post on LLMs instantly clear and meaningful.
Learn exactly where Web Scraping, Tokenization, RLHF, Transformer Architectures, ONNX Optimization, Causal Language Modeling, Gradient Clipping, Adaptive Learning, Supervised Fine-Tuning, RLAIF, TensorRT Inference, and more fit into the LLM pipeline.
๏น๏น๏น๏น๏น๏น๏น๏น๏น
ใ ๐๐๐ถ๐น๐ฑ๐ถ๐ป๐ด ๐๐๐ ๐: ๐ง๐ต๐ฒ ๐ฒ ๐๐๐๐ฒ๐ป๐๐ถ๐ฎ๐น ๐ฆ๐๐ฒ๐ฝ๐
โธ 1๏ธโฃ Data Collection (Web Scraping & Curation)
โ Web Scraping: Gather data from books, research papers, Wikipedia, GitHub, Reddit, and more using Scrapy, BeautifulSoup, Selenium, and APIs.
โ Filtering & Cleaning: Remove duplicates, spam, broken HTML, and filter biased, copyrighted, or inappropriate content.
โ Dataset Structuring: Tokenize text using BPE, SentencePiece, or Unigram; add metadata like source, timestamp, and quality rating.
โธ 2๏ธโฃ Preprocessing & Tokenization
โ Tokenization: Convert text into numerical tokens using SentencePiece or GPTโs BPE tokenizer.
โ Data Formatting: Structure datasets into JSON, TFRecord, or Hugging Face formats; use Sharding for parallel processing.
โธ 3๏ธโฃ Model Architecture & Pretraining
โ Architecture Selection: Choose a Transformer-based model (GPT, T5, LLaMA, Falcon) and define parameter size (7Bโ175B).
โ Compute & Infrastructure: Train on GPUs/TPUs (A100, H100, TPU v4/v5) with PyTorch, JAX, DeepSpeed, and Megatron-LM.
โ Pretraining: Use Causal Language Modeling (CLM) with Cross-Entropy Loss, Gradient Checkpointing, and Parallelization (FSDP, ZeRO).
โ Optimizations: Apply Mixed Precision (FP16/BF16), Gradient Clipping, and Adaptive Learning Rate Schedulers for efficiency.
โธ 4๏ธโฃ Model Alignment (Fine-Tuning & RLHF)
โ Supervised Fine-Tuning (SFT): Train on high-quality human-annotated datasets (InstructGPT, Alpaca, Dolly).
โ Reinforcement Learning from Human Feedback (RLHF): Generate responses, rank outputs, train a Reward Model (PPO), and refine using Proximal Policy Optimization (PPO).
โ Safety & Constitutional AI: Apply RLAIF, adversarial training, and bias filtering.
โธ 5๏ธโฃ Deployment & Optimization
โ Compression & Quantization: Reduce model size with GPTQ, AWQ, LLM.int8(), and Knowledge Distillation.
โ API Serving & Scaling: Deploy with vLLM, Triton Inference Server, TensorRT, ONNX, and Ray Serve for efficient inference.
โ Monitoring & Continuous Learning: Track performance, latency, and hallucinations;
โธ 6๏ธโฃEvaluation & Benchmarking
โ Performance Testing: Validate using HumanEval, HELM, OpenAI Eval, MMLU, ARC, and MT-Bench.
โฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃ
https://t.iss.one/DataScienceMโญ๏ธ
Learn exactly where Web Scraping, Tokenization, RLHF, Transformer Architectures, ONNX Optimization, Causal Language Modeling, Gradient Clipping, Adaptive Learning, Supervised Fine-Tuning, RLAIF, TensorRT Inference, and more fit into the LLM pipeline.
๏น๏น๏น๏น๏น๏น๏น๏น๏น
ใ ๐๐๐ถ๐น๐ฑ๐ถ๐ป๐ด ๐๐๐ ๐: ๐ง๐ต๐ฒ ๐ฒ ๐๐๐๐ฒ๐ป๐๐ถ๐ฎ๐น ๐ฆ๐๐ฒ๐ฝ๐
โธ 1๏ธโฃ Data Collection (Web Scraping & Curation)
โ Web Scraping: Gather data from books, research papers, Wikipedia, GitHub, Reddit, and more using Scrapy, BeautifulSoup, Selenium, and APIs.
โ Filtering & Cleaning: Remove duplicates, spam, broken HTML, and filter biased, copyrighted, or inappropriate content.
โ Dataset Structuring: Tokenize text using BPE, SentencePiece, or Unigram; add metadata like source, timestamp, and quality rating.
โธ 2๏ธโฃ Preprocessing & Tokenization
โ Tokenization: Convert text into numerical tokens using SentencePiece or GPTโs BPE tokenizer.
โ Data Formatting: Structure datasets into JSON, TFRecord, or Hugging Face formats; use Sharding for parallel processing.
โธ 3๏ธโฃ Model Architecture & Pretraining
โ Architecture Selection: Choose a Transformer-based model (GPT, T5, LLaMA, Falcon) and define parameter size (7Bโ175B).
โ Compute & Infrastructure: Train on GPUs/TPUs (A100, H100, TPU v4/v5) with PyTorch, JAX, DeepSpeed, and Megatron-LM.
โ Pretraining: Use Causal Language Modeling (CLM) with Cross-Entropy Loss, Gradient Checkpointing, and Parallelization (FSDP, ZeRO).
โ Optimizations: Apply Mixed Precision (FP16/BF16), Gradient Clipping, and Adaptive Learning Rate Schedulers for efficiency.
โธ 4๏ธโฃ Model Alignment (Fine-Tuning & RLHF)
โ Supervised Fine-Tuning (SFT): Train on high-quality human-annotated datasets (InstructGPT, Alpaca, Dolly).
โ Reinforcement Learning from Human Feedback (RLHF): Generate responses, rank outputs, train a Reward Model (PPO), and refine using Proximal Policy Optimization (PPO).
โ Safety & Constitutional AI: Apply RLAIF, adversarial training, and bias filtering.
โธ 5๏ธโฃ Deployment & Optimization
โ Compression & Quantization: Reduce model size with GPTQ, AWQ, LLM.int8(), and Knowledge Distillation.
โ API Serving & Scaling: Deploy with vLLM, Triton Inference Server, TensorRT, ONNX, and Ray Serve for efficient inference.
โ Monitoring & Continuous Learning: Track performance, latency, and hallucinations;
โธ 6๏ธโฃEvaluation & Benchmarking
โ Performance Testing: Validate using HumanEval, HELM, OpenAI Eval, MMLU, ARC, and MT-Bench.
โฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃโฃ
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค5
PyTorch Masterclass: Part 5 โ Reinforcement Learning with PyTorch
Duration: ~90 minutes
LINK: https://hackmd.io/@husseinsheikho/pytorch-5
https://t.iss.one/DataScienceM๐พ
Duration: ~90 minutes
LINK: https://hackmd.io/@husseinsheikho/pytorch-5
#PyTorch #ReinforcementLearning #RL #DeepRL #Qlearning #DQN #PPO #DDPG #MarkovDecisionProcesses #AI #MachineLearning #DeepLearning #ReinforcementLearning #PyTorchRL
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค1
Forwarded from Python | Machine Learning | Coding | R
โLearn AIโ is everywhere. But where do the builders actually start?
Hereโs the real path, the courses, papers and repos that matter.
โ
Videos:
Everything here โ https://lnkd.in/ePfB8_rk
โก๏ธ LLM Introduction โ https://lnkd.in/ernZFpvB
โก๏ธ LLMs from Scratch - Stanford CS229 โ https://lnkd.in/etUh6_mn
โก๏ธ Agentic AI Overview โhttps://lnkd.in/ecpmzAyq
โก๏ธ Building and Evaluating Agents โ https://lnkd.in/e5KFeZGW
โก๏ธ Building Effective Agents โ https://lnkd.in/eqxvBg79
โก๏ธ Building Agents with MCP โ https://lnkd.in/eZd2ym2K
โก๏ธ Building an Agent from Scratch โ https://lnkd.in/eiZahJGn
โ
Courses:
All Courses here โ https://lnkd.in/eKKs9ves
โก๏ธ HuggingFace's Agent Course โ https://lnkd.in/e7dUTYuE
โก๏ธ MCP with Anthropic โ https://lnkd.in/eMEnkCPP
โก๏ธ Building Vector DB with Pinecone โ https://lnkd.in/eP2tMGVs
โก๏ธ Vector DB from Embeddings to Apps โ https://lnkd.in/eP2tMGVs
โก๏ธ Agent Memory โ https://lnkd.in/egC8h9_Z
โก๏ธ Building and Evaluating RAG apps โ https://lnkd.in/ewy3sApa
โก๏ธ Building Browser Agents โ https://lnkd.in/ewy3sApa
โก๏ธ LLMOps โ https://lnkd.in/ex4xnE8t
โก๏ธ Evaluating AI Agents โ https://lnkd.in/eBkTNTGW
โก๏ธ Computer Use with Anthropic โ https://lnkd.in/ebHUc-ZU
โก๏ธ Multi-Agent Use โ https://lnkd.in/e4f4HtkR
โก๏ธ Improving LLM Accuracy โ https://lnkd.in/eVUXGT4M
โก๏ธ Agent Design Patterns โ https://lnkd.in/euhUq3W9
โก๏ธ Multi Agent Systems โ https://lnkd.in/evBnavk9
โ
Guides:
Access all โ https://lnkd.in/e-GA-HRh
โก๏ธ Google's Agent โ https://lnkd.in/encAzwKf
โก๏ธ Google's Agent Companion โ https://lnkd.in/e3-XtYKg
โก๏ธ Building Effective Agents by Anthropic โ https://lnkd.in/egifJ_wJ
โก๏ธ Claude Code Best practices โ https://lnkd.in/eJnqfQju
โก๏ธ OpenAI's Practical Guide to Building Agents โ https://lnkd.in/e-GA-HRh
โ
Repos:
โก๏ธ GenAI Agents โ https://lnkd.in/eAscvs_i
โก๏ธ Microsoft's AI Agents for Beginners โ https://lnkd.in/d59MVgic
โก๏ธ Prompt Engineering Guide โ https://lnkd.in/ewsbFwrP
โก๏ธ AI Agent Papers โ https://lnkd.in/esMHrxJX
โ
Papers:
๐ก ReAct โ https://lnkd.in/eZ-Z-WFb
๐ก Generative Agents โ https://lnkd.in/eDAeSEAq
๐ก Toolformer โ https://lnkd.in/e_Vcz5K9
๐ก Chain-of-Thought Prompting โ https://lnkd.in/eRCT_Xwq
๐ก Tree of Thoughts โ https://lnkd.in/eiadYm8S
๐ก Reflexion โ https://lnkd.in/eggND2rZ
๐ก Retrieval-Augmented Generation Survey โ https://lnkd.in/eARbqdYE
Access all โ https://lnkd.in/e-GA-HRh
By: https://t.iss.one/CodeProgrammer๐ก
Hereโs the real path, the courses, papers and repos that matter.
Everything here โ https://lnkd.in/ePfB8_rk
All Courses here โ https://lnkd.in/eKKs9ves
Access all โ https://lnkd.in/e-GA-HRh
Access all โ https://lnkd.in/e-GA-HRh
By: https://t.iss.one/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค1
Python Commands for Data Cleaning
#Python #DataCleaning #DataAnalytics #DataScientists #MachineLearning #ArtificialIntelligence #DataAnalysis
https://t.iss.one/DataScienceMโญ
#Python #DataCleaning #DataAnalytics #DataScientists #MachineLearning #ArtificialIntelligence #DataAnalysis
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค1
GoogLeNet (Inception v1) .pdf
5 MB
๐ Just Built GoogLeNet (Inception v1) From Scratch Using TensorFlow! ๐ง
https://t.iss.one/DataScienceM๐ฉโ๐ป
1.Inception Module: Naรฏve vs. Dimension-Reduced Versions
a) Naรฏve Inception Module
โข Applies four parallel operations directly to the input from the previous layer:
โข 1x1 convolutions
โข 3x3 convolutions
โข 5x5 convolutions
โข 3x3 max pooling
โข Outputs of all four are concatenated along the depth axis for the next layer.
b) Dimension-Reduced Inception Module
โข Enhances efficiency by adding 1x1 convolutions (โbottleneck layersโ) before the heavier 3x3 and 5x5 convolutions and after the pooling branch.
โข These 1x1 convolutions reduce feature dimensionality, decreasing computation and parameter count without losing representational power.
2. Stacked Modules and Network Structure
GoogLeNet stacks multiple Inception modules with dimension reduction, interleaved with standard convolutional and pooling layers. Its architecture can be visualized as a deep stack of these modules, providing both breadth (parallel multi-scale processing) and depth (repetitive stacking).
Key Elements:
โข Initial โstemโ layers: Traditional convolutions with larger filters (e.g., 7x7, 3x3) and max-pooling for early spatial reduction.
โข Series of Inception modules: Each accepts the preceding layerโs output and applies parallel paths with 1x1, 3x3, 5x5 convolutions, and max-pooling, with dimension reduction.
โข MaxPooling between certain groups to downsample spatial resolution.
โข Two auxiliary classifiers (added during training, removed for inference) are inserted mid-network to encourage better gradient flow, combat vanishing gradients, and provide deep supervision.
โข Final layers: Global average pooling, dropout for regularization, and a dense (softmax) classifier for the main output.
3. Auxiliary Classifiers
โข Purpose: Deliver additional gradient signal deep into the network, helping train very deep architectures.
โข Structure: Each consists of an average pooling, 1x1 convolution, flattening, dense layers, dropout, and a softmax output.
4. Implementation Highlights
โข Efficient Multi-Branch Design: By combining filters of different sizes, the model robustly captures both fine and coarse image features.
โข Parameter-saving Tricks: 1x1 convolutions before expensive layers drastically cut computational cost.
โข Deep Supervision: Auxiliary classifiers support gradient propagation.
GitHub:[https://lnkd.in/gJGsYkFk]
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4๐1
https://t.iss.one/InsideAds_bot/open?startapp=r_148350890_utm_source-insideadsInternal-utm_medium-notification-utm_campaign-referralRegistered
if you have channel , make money by using this ads paltform
easy and auto ads posting ( profit: 100$ monthly per channel)
if you have channel , make money by using this ads paltform
easy and auto ads posting ( profit: 100$ monthly per channel)
Telegram
Inside Ads
Smart tool for growth and monetisation of Telegram channels.
Attract subscribers and earn money on your channel (from 100 subscribers). AI will select platforms, advertisers and create ads automatically
Attract subscribers and earn money on your channel (from 100 subscribers). AI will select platforms, advertisers and create ads automatically