Data Science Machine Learning Data Analysis
38.6K subscribers
3.59K photos
31 videos
39 files
1.27K links
ads: @HusseinSheikho

This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
Download Telegram
πŸ”₯ Master Vision Transformers with 65+ MCQs! πŸ”₯

Are you preparing for AI interviews or want to test your knowledge in Vision Transformers (ViT)?

🧠 Dive into 65+ curated Multiple Choice Questions covering the fundamentals, architecture, training, and applications of ViT β€” all with answers!

🌐 Explore Now: https://hackmd.io/@husseinsheikho/vit-mcq

πŸ”Ή Table of Contents
Basic Concepts (Q1–Q15)
Architecture & Components (Q16–Q30)
Attention & Transformers (Q31–Q45)
Training & Optimization (Q46–Q55)
Advanced & Real-World Applications (Q56–Q65)
Answer Key & Explanations

#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #MCQ #InterviewPrep


βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
❀6
✨ Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset ✨

πŸ“– Table of Contents Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset Introduction Dataset and Task Overview About the Dataset What Are We Detecting? Defining Pothole Severity Can the Pothole Severity Logic Be Improved? Configuring Your Development Environment Training…...

🏷️ #ComputerVision #DeepLearning #ObjectDetection #Tutorial #YOLO
πŸ‘1
✨ Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset ✨

πŸ“– Table of Contents Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset Introduction Dataset and Task Overview About the Dataset What Are We Detecting? Defining Pothole Severity Can the Pothole Severity Logic Be Improved? Configuring Your Development Environment Training…...

🏷️ #ComputerVision #DeepLearning #ObjectDetection #Tutorial #YOLO
✨ Sharpen Your Vision: Super-Resolution of CCTV Images Using Hugging Face Diffusers ✨

πŸ“– Table of Contents Sharpen Your Vision: Super-Resolution of CCTV Images Using Hugging Face Diffusers Configuring Your Development Environment Problem Statement How Does Super-Resolution Solve This? State-of-the-Art Approaches Generative Adversarial Networks (GANs) Diffusion Models Implementing Diffus...

🏷️ #ArtificialIntelligence #ComputerVision #DeepLearning #ImageProcessing #MachineLearning #Tutorial
✨ Unlocking Image Clarity: A Comprehensive Guide to Super-Resolution Techniques ✨

πŸ“– Table of Contents Unlocking Image Clarity: A Comprehensive Guide to Super-Resolution Techniques Introduction Configuring Your Development Environment Need Help Configuring Your Development Environment? What Is Super-Resolution? Usual Problems with Low-Resolution Imagery Traditional Computer Vision A...

🏷️ #ArtificialIntelligence #ComputerVision #DeepLearning #ImageProcessing #MachineLearning #TechnologyApplications #Tutorial
✨ CycleGAN: Unpaired Image-to-Image Translation (Part 1) ✨

πŸ“– Table of Contents CycleGAN: Unpaired Image-to-Image Translation (Part 1) Introduction Unpaired Image Translation CycleGAN Pipeline and Training Loss Formulation Adversarial Loss Cycle Consistency Summary Citation Information CycleGAN: Unpaired Image-to-Image Translation (Part 1) In this tutorial, yo...

🏷️ #ComputerVision #CycleGAN #DeepLearning #Keras #KerasandTensorFlow #TensorFlow #UnpairedImageTranslation
✨ Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset ✨

πŸ“– Table of Contents Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset Introduction Dataset and Task Overview About the Dataset What Are We Detecting? Defining Pothole Severity Can the Pothole Severity Logic Be Improved? Configuring Your Development Environment Training…...

🏷️ #ComputerVision #DeepLearning #ObjectDetection #Tutorial #YOLO
✨ People Tracker with YOLOv12 and Centroid Tracker ✨

πŸ“– Table of Contents People Tracker with YOLOv12 and Centroid Tracker Introduction Why People Tracker Monitoring Matters How YOLOv12 Enables Real-Time Applications Configuring Your Development Environment Downloading the Input Video Install gdown Download the Video Visualizing the Inference and Trackin...

🏷️ #ComputerVision #ObjectDetection #PeopleTracker #Tutorial #YOLOv12
✨ Meet BLIP: The Vision-Language Model Powering Image Captioning ✨

πŸ“– Table of Contents Meet BLIP: The Vision-Language Model Powering Image Captioning What Is Image Captioning and Why Is It Challenging? Why It’s Challenging Why Traditional Vision Tasks Aren’t Enough Configuring Your Development Environment A Brief History of Image Captioning Models…...

🏷️ #ComputerVision #DeepLearning #ImageCaptioning #MultimodalAI #Tutorial
❀1
πŸ€–πŸ§  Thinking with Camera 2.0: A Powerful Multimodal Model for Camera-Centric Understanding and Generation

πŸ—“οΈ 14 Oct 2025
πŸ“š AI News & Trends

In the rapidly evolving field of multimodal AI, bridging gaps between vision, language and geometry is one of the frontier challenges. Traditional vision-language models excel at describing what is in an image β€œa cat on a sofa” β€œa red car on the road” but struggle to reason about how the image was captured: the camera’s ...

#MultimodalAI #CameraCentricUnderstanding #VisionLanguageModels #AIResearch #ComputerVision #GenerativeModels
# Real-World Case Study: E-commerce Product Pipeline
import boto3
from PIL import Image
import io

def process_product_image(s3_bucket, s3_key):
# 1. Download from S3
s3 = boto3.client('s3')
response = s3.get_object(Bucket=s3_bucket, Key=s3_key)
img = Image.open(io.BytesIO(response['Body'].read()))

# 2. Standardize dimensions
img = img.convert("RGB")
img = img.resize((1200, 1200), Image.LANCZOS)

# 3. Remove background (simplified)
# In practice: use rembg or AWS Rekognition
img = remove_background(img)

# 4. Generate variants
variants = {
"web": img.resize((800, 800)),
"mobile": img.resize((400, 400)),
"thumbnail": img.resize((100, 100))
}

# 5. Upload to CDN
for name, variant in variants.items():
buffer = io.BytesIO()
variant.save(buffer, "JPEG", quality=95)
s3.upload_fileobj(
buffer,
"cdn-bucket",
f"products/{s3_key.split('/')[-1].split('.')[0]}_{name}.jpg",
ExtraArgs={'ContentType': 'image/jpeg', 'CacheControl': 'max-age=31536000'}
)

# 6. Generate WebP version
webp_buffer = io.BytesIO()
img.save(webp_buffer, "WEBP", quality=85)
s3.upload_fileobj(webp_buffer, "cdn-bucket", f"products/{s3_key.split('/')[-1].split('.')[0]}.webp")

process_product_image("user-uploads", "products/summer_dress.jpg")


By: @DataScienceM πŸ‘

#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
❀1
In Python, building AI-powered Telegram bots unlocks massive potential for image generation, processing, and automationβ€”master this to create viral tools and ace full-stack interviews! πŸ€–

# Basic Bot Setup - The foundation (PTB v20+ Async)
from telegram.ext import Application, CommandHandler, MessageHandler, filters

async def start(update, context):
await update.message.reply_text(
"✨ AI Image Bot Active!\n"
"/generate - Create images from text\n"
"/enhance - Improve photo quality\n"
"/help - Full command list"
)

app = Application.builder().token("YOUR_BOT_TOKEN").build()
app.add_handler(CommandHandler("start", start))
app.run_polling()


# Image Generation - DALL-E Integration (OpenAI)
import openai
from telegram.ext import ContextTypes

openai.api_key = os.getenv("OPENAI_API_KEY")

async def generate(update: Update, context: ContextTypes.DEFAULT_TYPE):
if not context.args:
await update.message.reply_text("❌ Usage: /generate cute robot astronaut")
return

prompt = " ".join(context.args)
try:
response = openai.Image.create(
prompt=prompt,
n=1,
size="1024x1024"
)
await update.message.reply_photo(
photo=response['data'][0]['url'],
caption=f"🎨 Generated: *{prompt}*",
parse_mode="Markdown"
)
except Exception as e:
await update.message.reply_text(f"πŸ”₯ Error: {str(e)}")

app.add_handler(CommandHandler("generate", generate))


Learn more: https://hackmd.io/@husseinsheikho/building-AI-powered-Telegram-bots

#Python #TelegramBot #AI #ImageGeneration #StableDiffusion #OpenAI #MachineLearning #CodingInterview #FullStack #Chatbots #DeepLearning #ComputerVision #Programming #TechJobs #DeveloperTips #CareerGrowth #CloudComputing #Docker #APIs #Python3 #Productivity #TechTips


https://t.iss.one/DataScienceM 🦾
Please open Telegram to view this post
VIEW IN TELEGRAM
❀1
#YOLOv8 #ComputerVision #ObjectDetection #IndustrialAI #Python

Applying YOLOv8 for Industrial Automation: Counting Plastic Bottles

This lesson will guide you through a complete computer vision project using YOLOv8. The goal is to detect and count plastic bottles in an image from an industrial setting, such as a conveyor belt or a storage area.

---

Step 1: Setup and Installation

First, we need to install the necessary libraries. The ultralytics library provides the YOLOv8 model, and opencv-python is essential for image processing tasks.

#Setup #Installation

# Open your terminal or command prompt and run this command:
pip install ultralytics opencv-python


---

Step 2: Loading the Model and the Target Image

We will load a pre-trained YOLOv8 model. These models are trained on the large COCO dataset, which already knows how to identify common objects like 'bottle'. Then, we'll load our industrial image. Ensure you have an image named factory_bottles.jpg in your project folder.

#ModelLoading #DataHandling

import cv2
from ultralytics import YOLO

# Load a pre-trained YOLOv8 model (yolov8n.pt is the smallest and fastest)
model = YOLO('yolov8n.pt')

# Load the image from the industrial setting
image_path = 'factory_bottles.jpg' # Make sure this image is in your directory
img = cv2.imread(image_path)

# A quick check to ensure the image was loaded correctly
if img is None:
print(f"Error: Could not load image at {image_path}")
else:
print("YOLOv8 model and image loaded successfully.")


---

Step 3: Performing Detection on the Image

With the model and image loaded, we can now run the detection. The ultralytics library makes this process incredibly simple. The model will analyze the image and identify all the objects it recognizes.

#Inference #ObjectDetection

# Run the model on the image to get detection results
results = model(img)

print("Detection complete. Processing results...")


---

Step 4: Filtering and Counting the Bottles

The model detects many types of objects. Our task is to go through the results, filter for only the 'bottle' class, and count how many there are. We'll also store the locations (bounding boxes) of each detected bottle for visualization.

#DataProcessing #Filtering

# Initialize a counter for the bottles
bottle_count = 0
bottle_boxes = []

# The model's results is a list, so we loop through it
for result in results:
# Each result has a 'boxes' attribute with the detections
boxes = result.boxes
for box in boxes:
# Get the class ID of the detected object
class_id = int(box.cls)
# Check if the class name is 'bottle'
if model.names[class_id] == 'bottle':
bottle_count += 1
# Store the bounding box coordinates (x1, y1, x2, y2)
bottle_boxes.append(box.xyxy[0])

print(f"Total plastic bottles detected: {bottle_count}")


---

Step 5: Visualizing the Results

A number is good, but seeing what the model detected is better. We will draw the bounding boxes and the final count directly onto the image to create a clear visual output.

#Visualization #OpenCV
πŸ”₯1