Data Science Machine Learning Data Analysis
37.3K subscribers
1.48K photos
29 videos
39 files
1.25K links
This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning

Cross promotion and ads: @hussein_sheikho
Download Telegram
๐Ÿ”ฅ Master Vision Transformers with 65+ MCQs! ๐Ÿ”ฅ

Are you preparing for AI interviews or want to test your knowledge in Vision Transformers (ViT)?

๐Ÿง  Dive into 65+ curated Multiple Choice Questions covering the fundamentals, architecture, training, and applications of ViT โ€” all with answers!

๐ŸŒ Explore Now: https://hackmd.io/@husseinsheikho/vit-mcq

๐Ÿ”น Table of Contents
Basic Concepts (Q1โ€“Q15)
Architecture & Components (Q16โ€“Q30)
Attention & Transformers (Q31โ€“Q45)
Training & Optimization (Q46โ€“Q55)
Advanced & Real-World Applications (Q56โ€“Q65)
Answer Key & Explanations

#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #MCQ #InterviewPrep


โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
โค6
5 minutes of work - 127,000$ profit!

Opened access to the Jay Welcome Club where the AI bot does all the work itself๐Ÿ’ป

Usually you pay crazy money to get into this club, but today access is free for everyone!

23,432% on deposit earned by club members in the last 6 months๐Ÿ“ˆ

Just follow Jay's trades and earn! ๐Ÿ‘‡

https://t.iss.one/+mONXtEgVxtU5NmZl
๐Ÿš€ Become an Agentic AI Builder โ€” Free 12โ€‘Week Certification by Ready Tensor

Ready Tensorโ€™s Agentic AI Developer Certification is a free, project first 12โ€‘week program designed to help you build and deploy real-world agentic AI systems. You'll complete three portfolio-ready projects using tools like LangChain, LangGraph, and vector databases, while deploying production-ready agents with FastAPI or Streamlit.

The course focuses on developing autonomous AI agents that can plan, reason, use memory, and act safely in complex environments. Certification is earned not by watching lectures, but by building โ€” each project is reviewed against rigorous standards.

You can start anytime, and new cohorts begin monthly. Ideal for developers and engineers ready to go beyond chat prompts and start building true agentic systems.

๐Ÿ‘‰ Apply now: https://www.readytensor.ai/agentic-ai-cert/
โค1
๐Ÿ“˜ Ultimate Guide to Graph Neural Networks (GNNs): Part 1 โ€” Foundations of Graph Theory & Why GNNs Revolutionize AI

Duration: ~45 minutes reading time | Comprehensive beginner-to-advanced introduction

Let's start: https://hackmd.io/@husseinsheikho/GNN-1

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #NodeClassification #LinkPrediction #GraphRepresentation #AIforBeginners #AdvancedAI
๏ปฟ
โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ“˜ Ultimate Guide to Graph Neural Networks (GNNs): Part 2 โ€” The Message Passing Framework: Mathematical Heart of All GNNs

Duration: ~60 minutes reading time | Comprehensive deep dive into the core mechanism powering modern GNNs

Let's study: https://hackmd.io/@husseinsheikho/GNN-2

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #MessagePassing #GraphAlgorithms #NodeClassification #LinkPrediction #GraphRepresentation #AIforBeginners #AdvancedAI

โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3๐Ÿคฉ1
๐Ÿ“• Ultimate Guide to Graph Neural Networks (GNNs): Part 3 โ€” Advanced GNN Architectures: Transformers, Temporal Networks & Geometric Deep Learning

Duration: ~60 minutes reading time | Comprehensive deep dive into cutting-edge GNN architectures

๐Ÿ†˜ Read: https://hackmd.io/@husseinsheikho/GNN-3

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #GraphTransformers #TemporalGNNs #GeometricDeepLearning #AdvancedGNNs #AIforBeginners #AdvancedAI


โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ“˜ Ultimate Guide to Graph Neural Networks (GNNs): Part 4 โ€” GNN Training Dynamics, Optimization Challenges, and Scalability Solutions

Duration: ~45 minutes reading time | Comprehensive guide to training GNNs effectively at scale

Part 4-A: https://hackmd.io/@husseinsheikho/GNN4-A

Part4-B: https://hackmd.io/@husseinsheikho/GNN4-B

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #GNNOptimization #ScalableGNNs #TrainingDynamics #AIforBeginners #AdvancedAI


โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4๐Ÿ‘Ž1
๐Ÿ“˜ Ultimate Guide to Graph Neural Networks (GNNs): Part 5 โ€” GNN Applications Across Domains: Real-World Impact in 30 Minutes

Duration: ~30 minutes reading time | Practical guide to GNN applications with concrete ROI metrics

Link: https://hackmd.io/@husseinsheikho/GNN-5

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #RealWorldApplications #HealthcareAI #FinTech #DrugDiscovery #RecommendationSystems #ClimateAI

โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4
๐Ÿ“˜ Ultimate Guide to Graph Neural Networks (GNNs): Part 6 โ€” Advanced Frontiers, Ethics, and Future Directions

Duration: ~50 minutes reading time | Cutting-edge insights on where GNNs are headed

Let's read: https://hackmd.io/@husseinsheikho/GNN-6

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #FutureOfGNNs #EmergingResearch #EthicalAI #GNNBestPractices #AdvancedAI #50MinuteRead

โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4
๐Ÿ“˜ Ultimate Guide to Graph Neural Networks (GNNs): Part 7 โ€” Advanced Implementation, Multimodal Integration, and Scientific Applications

Duration: ~60 minutes reading time | Deep dive into cutting-edge GNN implementations and applications

Read: https://hackmd.io/@husseinsheikho/GNN7

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #AdvancedGNNs #MultimodalLearning #ScientificAI #GNNImplementation #60MinuteRead

โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2
This media is not supported in your browser
VIEW IN TELEGRAM
๐Ÿฅ‡ This repo is like gold for every data scientist!

โœ… Just open your browser; a ton of interactive exercises and real experiences await you. Any question about statistics, probability, Python, or machine learning, you'll get the answer right there! With code, charts, even animations. This way, you don't waste time, and what you learn really sticks in your mind!

โฌ…๏ธ Data science statistics and probability topics
โฌ…๏ธ Clustering
โฌ…๏ธ Principal Component Analysis (PCA)
โฌ…๏ธ Bagging and Boosting techniques
โฌ…๏ธ Linear regression
โฌ…๏ธ Neural networks and more...


โ”Œ ๐Ÿ“‚ Int Data Science Python Dash
โ””
๐Ÿฑ GitHub-Repos

๐Ÿ‘‰ @codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค6
๐ƒ๐š๐ญ๐š ๐‚๐ฅ๐ž๐š๐ง๐ข๐ง๐  ๐ข๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง: ๐Ÿ๐Ÿ’ ๐Œ๐ฎ๐ฌ๐ญ-๐Š๐ง๐จ๐ฐ ๐’๐ญ๐ž๐ฉ๐ฌ ๐Ÿ (Pandas)

https://t.iss.one/DataScienceM โœ…
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2
DS INTERVIEW.pdf
16.6 MB
800+ Data Science Interview Questions โ€“ A Must-Have Resource for Every Aspirant

Breaking into the data science field is challengingโ€”not because of a lack of opportunities, but because of how thoroughly you need to prepare.

This document, curated by Steve Nouri, is a goldmine of 800+ real-world interview questions covering:
-Statistics
-Data Science Fundamentals
-Data Analysis
-Machine Learning
-Deep Learning
-Python & R
-Model Evaluation & Optimization
-Deployment Strategies
โ€ฆand much more!

https://t.iss.one/CodeProgrammer ๐Ÿ”ฐ
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘5
๐ŸŽโณThese 6 steps make every future post on LLMs instantly clear and meaningful.

Learn exactly where Web Scraping, Tokenization, RLHF, Transformer Architectures, ONNX Optimization, Causal Language Modeling, Gradient Clipping, Adaptive Learning, Supervised Fine-Tuning, RLAIF, TensorRT Inference, and more fit into the LLM pipeline.

๏นŒ๏นŒ๏นŒ๏นŒ๏นŒ๏นŒ๏นŒ๏นŒ๏นŒ

ใ€‹ ๐—•๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐—Ÿ๐—Ÿ๐— ๐˜€: ๐—ง๐—ต๐—ฒ ๐Ÿฒ ๐—˜๐˜€๐˜€๐—ฒ๐—ป๐˜๐—ถ๐—ฎ๐—น ๐—ฆ๐˜๐—ฒ๐—ฝ๐˜€

โœธ 1๏ธโƒฃ Data Collection (Web Scraping & Curation)

โ˜† Web Scraping: Gather data from books, research papers, Wikipedia, GitHub, Reddit, and more using Scrapy, BeautifulSoup, Selenium, and APIs.

โ˜† Filtering & Cleaning: Remove duplicates, spam, broken HTML, and filter biased, copyrighted, or inappropriate content.

โ˜† Dataset Structuring: Tokenize text using BPE, SentencePiece, or Unigram; add metadata like source, timestamp, and quality rating.

โœธ 2๏ธโƒฃ Preprocessing & Tokenization

โ˜† Tokenization: Convert text into numerical tokens using SentencePiece or GPTโ€™s BPE tokenizer.

โ˜† Data Formatting: Structure datasets into JSON, TFRecord, or Hugging Face formats; use Sharding for parallel processing.

โœธ 3๏ธโƒฃ Model Architecture & Pretraining

โ˜† Architecture Selection: Choose a Transformer-based model (GPT, T5, LLaMA, Falcon) and define parameter size (7Bโ€“175B).

โ˜† Compute & Infrastructure: Train on GPUs/TPUs (A100, H100, TPU v4/v5) with PyTorch, JAX, DeepSpeed, and Megatron-LM.

โ˜† Pretraining: Use Causal Language Modeling (CLM) with Cross-Entropy Loss, Gradient Checkpointing, and Parallelization (FSDP, ZeRO).

โ˜† Optimizations: Apply Mixed Precision (FP16/BF16), Gradient Clipping, and Adaptive Learning Rate Schedulers for efficiency.

โœธ 4๏ธโƒฃ Model Alignment (Fine-Tuning & RLHF)

โ˜† Supervised Fine-Tuning (SFT): Train on high-quality human-annotated datasets (InstructGPT, Alpaca, Dolly).

โ˜† Reinforcement Learning from Human Feedback (RLHF): Generate responses, rank outputs, train a Reward Model (PPO), and refine using Proximal Policy Optimization (PPO).

โ˜† Safety & Constitutional AI: Apply RLAIF, adversarial training, and bias filtering.

โœธ 5๏ธโƒฃ Deployment & Optimization

โ˜† Compression & Quantization: Reduce model size with GPTQ, AWQ, LLM.int8(), and Knowledge Distillation.

โ˜† API Serving & Scaling: Deploy with vLLM, Triton Inference Server, TensorRT, ONNX, and Ray Serve for efficient inference.

โ˜† Monitoring & Continuous Learning: Track performance, latency, and hallucinations;

โœธ 6๏ธโƒฃEvaluation & Benchmarking

โ˜† Performance Testing: Validate using HumanEval, HELM, OpenAI Eval, MMLU, ARC, and MT-Bench.
โ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃโ‰ฃ

https://t.iss.one/DataScienceM โญ๏ธ
Please open Telegram to view this post
VIEW IN TELEGRAM
โค5
Please open Telegram to view this post
VIEW IN TELEGRAM
โค1