Data Science Machine Learning Data Analysis
37.2K subscribers
1.42K photos
28 videos
39 files
1.25K links
This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning

Cross promotion and ads: @hussein_sheikho
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
How do transformers work? Learn it by hand ๐Ÿ‘‡

๐—ช๐—ฎ๐—น๐—ธ๐˜๐—ต๐—ฟ๐—ผ๐˜‚๐—ด๐—ต

[1] Given
โ†ณ Input features from the previous block (5 positions)

[2] Attention
โ†ณ Feed all 5 features to a query-key attention module (QK) to obtain an attention weight matrix (A). I will skip the details of this module. In a follow-up post I will unpack this module.

[3] Attention Weighting
โ†ณ Multiply the input features with the attention weight matrix to obtain attention weighted features (Z). Note that there are still 5 positions.
โ†ณ The effect is to combine features across positions (horizontally), in this case, X1 := X1 + X2, X2 := X2 + X3....etc.

[4] FFN: First Layer
โ†ณ Feed all 5 attention weighted features into the first layer.
โ†ณ Multiply these features with the weights and biases.
โ†ณ The effect is to combine features across feature dimensions (vertically).
โ†ณ The dimensionality of each feature is increased from 3 to 4.
โ†ณ Note that each position is processed by the same weight matrix. This is what the term "position-wise" is referring to.
โ†ณ Note that the FFN is essentially a multi layer perceptron.

[5] ReLU
โ†ณ Negative values are set to zeros by ReLU.

[6] FFN: Second Layer
โ†ณ Feed all 5 features (d=3) into the second layer.
โ†ณ The dimensionality of each feature is decreased from 4 back to 3.
โ†ณ The output is fed to the next block to repeat this process.
โ†ณ Note that the next block would have a completely separate set of parameters.

#ai #tranformers #genai #learning

๐Ÿ’ฏ BEST DATA SCIENCE CHANNELS ON TELEGRAM ๐ŸŒŸ
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘7โค3
๐Ÿ”ด Comprehensive course on "Data Mining"
๐Ÿ–ฅ Carnegie Mellon University, USA


๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ป Carnegie University in the United States has come to offer a free #datamining course in 25 lectures to those interested in this field.

โ—€๏ธ In this course, you will deal with statistical concepts and model selection methods on the one hand, and on the other hand, you will have to implement these concepts in practice and present the results.

โ—€๏ธ The exercises are both combined: theory, #coding, and practical.๐Ÿ‘‡


โ”Œ ๐Ÿฅต Data Mining
โ””โฏ๏ธ Course Homepage

๐Ÿ’ฏ BEST DATA SCIENCE CHANNELS ON TELEGRAM ๐ŸŒŸ
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘3
This channels is for Programmers, Coders, Software Engineers.

0๏ธโƒฃ Python
1๏ธโƒฃ Data Science
2๏ธโƒฃ Machine Learning
3๏ธโƒฃ Data Visualization
4๏ธโƒฃ Artificial Intelligence
5๏ธโƒฃ Data Analysis
6๏ธโƒฃ Statistics
7๏ธโƒฃ Deep Learning
8๏ธโƒฃ programming Languages

โœ… https://t.iss.one/addlist/8_rRW2scgfRhOTc0

โœ… https://t.iss.one/Codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘1
Full PyTorch Implementation of Transformer-XL

If you're looking to understand and experiment with Transformer-XL using PyTorch, this resource provides a clean and complete implementation. Transformer-XL is a powerful model that extends the Transformer architecture with recurrence, enabling learning dependencies beyond fixed-length segments.

The implementation is ideal for researchers, students, and developers aiming to dive deeper into advanced language modeling techniques.

Explore the code and start building:
https://www.k-a.in/pyt-transformerXL.html

#TransformerXL #PyTorch #DeepLearning #NLP #LanguageModeling #AI #MachineLearning #OpenSource #ResearchTools

https://t.iss.one/CodeProgrammer
๐Ÿ‘3
Top 100+ questions%0A %22Google Data Science Interview%22.pdf
16.7 MB
๐Ÿ’ฏ Top 100+ Google Data Science Interview Questions

๐ŸŒŸ Essential Prep Guide for Aspiring Candidates

Google is known for its rigorous data science interview process, which typically follows a hybrid format. Candidates are expected to demonstrate strong programming skills, solid knowledge in statistics and machine learning, and a keen ability to approach problems from a product-oriented perspective.

To succeed, one must be proficient in several critical areas: statistics and probability, SQL and Python programming, product sense, and case study-based analytics.

This curated list features over 100 of the most commonly asked and important questions in Google data science interviews. It serves as a comprehensive resource to help candidates prepare effectively and confidently for the challenge ahead.

#DataScience #GoogleInterview #InterviewPrep #MachineLearning #SQL #Statistics #ProductAnalytics #Python #CareerGrowth


https://t.iss.one/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
@CodeProgrammer Matplotlib.pdf
4.3 MB
๐Ÿ’ฏ Mastering Matplotlib in 20 Days

The Complete Visual Guide for Data Enthusiasts

Matplotlib is a powerful Python library for data visualization, essential not only for acing job interviews but also for building a solid foundation in analytical thinking and data storytelling.

This step-by-step tutorial guide walks learners through everything from the basics to advanced techniques in Matplotlib. It also includes a curated collection of the most frequently asked Matplotlib-related interview questions, making it an ideal resource for both beginners and experienced professionals.

#Matplotlib #DataVisualization #Python #DataScience #InterviewPrep #Analytics #TechCareer #LearnToCode
๏ปฟ
https://t.iss.one/addlist/0f6vfFbEMdAwODBk ๐ŸŒŸ
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘9โค1
Automate Dataset Labeling with Active Learning

A few years ago, training AI models required massive amounts of labeled data. Manually collecting and labeling this data was both time-consuming and expensive. But thankfully, weโ€™ve come a long way since then, and now we have much more powerful tools and techniques to help us automate this labeling process. One of the most effective ways? Active Learning.

In this article, weโ€™ll walk through the concept of active learning, how it works, and share a step-by-step implementation of how to automate dataset labeling for a text classification task using this method.

Read article: https://machinelearningmastery.com/automate-dataset-labeling-with-active-learning/

https://t.iss.one/DataScienceM
๐Ÿ‘4โค1
This media is not supported in your browser
VIEW IN TELEGRAM
๐Ÿ“€ 55+ AI and Data Science Projects


๐Ÿ’ป Often you read all these articles, watch online courses, but until you do a practical project, start coding, and implement the concepts in practice, you don't learn anything.


๐Ÿ”ธ Here is a list of 55 projects in different categories:๐Ÿ‘‡


1โƒฃ Large language models ๐Ÿ”ธ Link

๐Ÿ”ข Fine-tuning LLMs ๐Ÿ”ธ Link

๐Ÿ”ข Time series data analysis ๐Ÿ”ธ Link

๐Ÿ”ข Computer Vision ๐Ÿ”ธ Link

๐Ÿ”ข Data Science ๐Ÿ”ธ Link

โž–โž–โž–โž–โž–
โช You can also access all of the above projects through the following GitHub repo: ๐Ÿ‘‡

โ”Œ
๐Ÿ“‚ AI Data Guided Projects
โ””
๐Ÿฑ GitHub-Repos

Join to our WhatsApp ๐Ÿ’ฌchannel:
https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘4โค1
How to Combine Pandas, NumPy, and Scikit-learn Seamlessly

Read Article: https://machinelearningmastery.com/how-to-combine-pandas-numpy-and-scikit-learn-seamlessly/

Join to our WhatsApp ๐Ÿ’ฌchannel:
https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2๐Ÿ‘1
This media is not supported in your browser
VIEW IN TELEGRAM
A new interactive sentiment visualization project has been developed, featuring a dynamic smiley face that reflects sentiment analysis results in real time. Using a natural language processing model, the system evaluates input text and adjusts the smiley face expression accordingly:

๐Ÿ™‚ Positive sentiment

โ˜น๏ธ Negative sentiment

The visualization offers an intuitive and engaging way to observe sentiment dynamics as they happen.

๐Ÿ”— GitHub: https://lnkd.in/e_gk3hfe
๐Ÿ“ฐ Article: https://lnkd.in/e_baNJd2

#AI #SentimentAnalysis #DataVisualization #InteractiveDesign #NLP #MachineLearning #Python #GitHubProjects #TowardsDataScience

๐Ÿ”— Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3๐Ÿ‘1
This channels is for Programmers, Coders, Software Engineers.

0๏ธโƒฃ Python
1๏ธโƒฃ Data Science
2๏ธโƒฃ Machine Learning
3๏ธโƒฃ Data Visualization
4๏ธโƒฃ Artificial Intelligence
5๏ธโƒฃ Data Analysis
6๏ธโƒฃ Statistics
7๏ธโƒฃ Deep Learning
8๏ธโƒฃ programming Languages

โœ… https://t.iss.one/addlist/8_rRW2scgfRhOTc0

โœ… https://t.iss.one/Codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค1
from SQL to pandas.pdf
1.3 MB
๐Ÿผ "Comparison Between SQL and pandas" โ€“ A Handy Reference Guide

โšก๏ธ As a data scientist, I often found myself switching back and forth between SQL and pandas during technical interviews. I was confident answering questions in SQL but sometimes struggled to translate the same logic into pandas โ€“ and vice versa.

๐Ÿ”ธ To bridge this gap, I created a concise booklet in the form of a comparison table. It maps SQL queries directly to their equivalent pandas implementations, making it easy to understand and switch between both tools.

โšก This reference guide has become an essential part of my interview prep. Before any interview, I quickly review it to ensure Iโ€™m ready to tackle data manipulation tasks using either SQL or pandas, depending on whatโ€™s required.

๐Ÿ“• Whether you're preparing for interviews or just want to solidify your understanding of both tools, this comparison guide is a great way to stay sharp and efficient.

#DataScience #SQL #pandas #InterviewPrep #Python #DataAnalysis #CareerGrowth #TechTips #Analytics

โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘7โค2๐Ÿ”ฅ1
๐ŸŸฃ AI Paper by Hand.pdf
29.1 MB
๐ŸŸฃ AI Paper by Hand โœ๏ธ

[1] ๐—ช๐—ต๐—ฎ๐˜ ๐— ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐˜€ ๐—ถ๐—ป ๐—ง๐—ฟ๐—ฎ๐—ป๐˜€๐—ณ๐—ผ๐—ฟ๐—บ๐—ฒ๐—ฟ๐˜€? ๐—ก๐—ผ๐˜ ๐—”๐—น๐—น ๐—”๐˜๐˜๐—ฒ๐—ป๐˜๐—ถ๐—ผ๐—ป ๐—ถ๐˜€ ๐—ก๐—ฒ๐—ฒ๐—ฑ๐—ฒ๐—ฑ

[2] ๐—ฃ๐—ฟ๐—ฒ๐—ฑ๐—ถ๐—ฐ๐˜๐—ถ๐—ป๐—ด ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฆ๐˜๐—ฟ๐—ถ๐—ป๐—ด๐˜€: ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐—˜๐—บ๐—ฏ๐—ฒ๐—ฑ๐—ฑ๐—ถ๐—ป๐—ด๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฎ๐˜†๐—ฒ๐˜€๐—ถ๐—ฎ๐—ป ๐—ข๐—ฝ๐˜๐—ถ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป

[3] ๐— ๐—ข๐——๐—˜๐—Ÿ ๐—ฆ๐—ช๐—”๐—ฅ๐— ๐—ฆ: ๐—–๐—ผ๐—น๐—น๐—ฎ๐—ฏ๐—ผ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—ฆ๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต ๐˜๐—ผ ๐—”๐—ฑ๐—ฎ๐—ฝ๐˜ ๐—Ÿ๐—Ÿ๐—  ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐˜๐˜€ ๐˜ƒ๐—ถ๐—ฎ ๐—ฆ๐˜„๐—ฎ๐—ฟ๐—บ ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ

[4] ๐—ง๐—›๐—œ๐—ก๐—ž๐—œ๐—ก๐—š ๐—Ÿ๐—Ÿ๐— ๐—ฆ: ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐—น ๐—œ๐—ป๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป ๐—™๐—ผ๐—น๐—น๐—ผ๐˜„๐—ถ๐—ป๐—ด ๐˜„๐—ถ๐˜๐—ต ๐—ง๐—ต๐—ผ๐˜‚๐—ด๐—ต๐˜ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป

[5] ๐—ข๐—ฝ๐—ฒ๐—ป๐—ฉ๐—Ÿ๐—”: ๐—”๐—ป ๐—ข๐—ฝ๐—ฒ๐—ป-๐—ฆ๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ ๐—ฉ๐—ถ๐˜€๐—ถ๐—ผ๐—ป-๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ-๐—”๐—ฐ๐˜๐—ถ๐—ผ๐—ป ๐— ๐—ผ๐—ฑ๐—ฒ๐—น

[6] ๐—ฅ๐—ง-๐Ÿญ: ๐—ฅ๐—ผ๐—ฏ๐—ผ๐˜๐—ถ๐—ฐ๐˜€ ๐—ง๐—ฟ๐—ฎ๐—ป๐˜€๐—ณ๐—ผ๐—ฟ๐—บ๐—ฒ๐—ฟ ๐—ณ๐—ผ๐—ฟ ๐—ฅ๐—ฒ๐—ฎ๐—น-๐—ช๐—ผ๐—ฟ๐—น๐—ฑ ๐—–๐—ผ๐—ป๐˜๐—ฟ๐—ผ๐—น ๐—”๐˜ ๐—ฆ๐—ฐ๐—ฎ๐—น๐—ฒ

[7] ฯ€๐Ÿฌ: ๐—” ๐—ฉ๐—ถ๐˜€๐—ถ๐—ผ๐—ป-๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ-๐—”๐—ฐ๐˜๐—ถ๐—ผ๐—ป ๐—™๐—น๐—ผ๐˜„ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐—ณ๐—ผ๐—ฟ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐—น ๐—ฅ๐—ผ๐—ฏ๐—ผ๐˜ ๐—–๐—ผ๐—ป๐˜๐—ฟ๐—ผ๐—น

[8] ๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น๐—”๐˜๐˜๐—ฒ๐—ป๐˜๐—ถ๐—ผ๐—ป: ๐—”๐—ฐ๐—ฐ๐—ฒ๐—น๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ป๐—ด ๐—Ÿ๐—ผ๐—ป๐—ด-๐—–๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ ๐—Ÿ๐—Ÿ๐—  ๐—œ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐˜ƒ๐—ถ๐—ฎ ๐—ฉ๐—ฒ๐—ฐ๐˜๐—ผ๐—ฟ ๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น

[9] ๐—ฃ-๐—ฅ๐—”๐—š: ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐˜ƒ๐—ฒ ๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น ๐—”๐˜‚๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฒ๐—ฑ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—™๐—ผ๐—ฟ ๐—ฃ๐—น๐—ฎ๐—ป๐—ป๐—ถ๐—ป๐—ด ๐—ผ๐—ป ๐—˜๐—บ๐—ฏ๐—ผ๐—ฑ๐—ถ๐—ฒ๐—ฑ ๐—˜๐˜ƒ๐—ฒ๐—ฟ๐˜†๐—ฑ๐—ฎ๐˜† ๐—ง๐—ฎ๐˜€๐—ธ

[10] ๐—ฅ๐˜‚๐—”๐—š: ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ฒ๐—ฑ-๐—ฅ๐˜‚๐—น๐—ฒ-๐—”๐˜‚๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฒ๐—ฑ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—™๐—ผ๐—ฟ ๐—Ÿ๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€

[11] ๐—ข๐—ป ๐˜๐—ต๐—ฒ ๐—ฆ๐˜‚๐—ฟ๐—ฝ๐—ฟ๐—ถ๐˜€๐—ถ๐—ป๐—ด ๐—˜๐—ณ๐—ณ๐—ฒ๐—ฐ๐˜๐—ถ๐˜ƒ๐—ฒ๐—ป๐—ฒ๐˜€๐˜€ ๐—ผ๐—ณ ๐—”๐˜๐˜๐—ฒ๐—ป๐˜๐—ถ๐—ผ๐—ป ๐—ง๐—ฟ๐—ฎ๐—ป๐˜€๐—ณ๐—ฒ๐—ฟ ๐—ณ๐—ผ๐—ฟ ๐—ฉ๐—ถ๐˜€๐—ถ๐—ผ๐—ป ๐—ง๐—ฟ๐—ฎ๐—ป๐˜€๐—ณ๐—ผ๐—ฟ๐—บ๐—ฒ๐—ฟ๐˜€

[12] ๐— ๐—ถ๐˜…๐˜๐˜‚๐—ฟ๐—ฒ-๐—ผ๐—ณ-๐—ง๐—ฟ๐—ฎ๐—ป๐˜€๐—ณ๐—ผ๐—ฟ๐—บ๐—ฒ๐—ฟ๐˜€: ๐—” ๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐˜€๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐—ฐ๐—ฎ๐—น๐—ฎ๐—ฏ๐—น๐—ฒ ๐—”๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐— ๐˜‚๐—น๐˜๐—ถ-๐— ๐—ผ๐—ฑ๐—ฎ๐—น ๐—™๐—ผ๐˜‚๐—ป๐—ฑ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€

[13]-[14] ๐—˜๐—ฑ๐—ถ๐—ณ๐˜† ๐Ÿฏ๐——: ๐—ฆ๐—ฐ๐—ฎ๐—น๐—ฎ๐—ฏ๐—น๐—ฒ ๐—›๐—ถ๐—ด๐—ต-๐—ค๐˜‚๐—ฎ๐—น๐—ถ๐˜๐˜† ๐Ÿฏ๐—— ๐—”๐˜€๐˜€๐—ฒ๐˜ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป

[15] ๐—•๐˜†๐˜๐—ฒ ๐—Ÿ๐—ฎ๐˜๐—ฒ๐—ป๐˜ ๐—ง๐—ฟ๐—ฎ๐—ป๐˜€๐—ณ๐—ผ๐—ฟ๐—บ๐—ฒ๐—ฟ: ๐—ฃ๐—ฎ๐˜๐—ฐ๐—ต๐—ฒ๐˜€ ๐—ฆ๐—ฐ๐—ฎ๐—น๐—ฒ ๐—•๐—ฒ๐˜๐˜๐—ฒ๐—ฟ ๐—ง๐—ต๐—ฎ๐—ป ๐—ง๐—ผ๐—ธ๐—ฒ๐—ป๐˜€

[16]-[18] ๐——๐—ฒ๐—ฒ๐—ฝ๐—ฆ๐—ฒ๐—ฒ๐—ธ-๐—ฉ๐Ÿฏ (๐—ฃ๐—ฎ๐—ฟ๐˜ ๐Ÿญ-๐Ÿฏ)

[19] ๐—ง๐—ฟ๐—ฎ๐—ป๐˜€๐—ณ๐—ผ๐—ฟ๐—บ๐—ฒ๐—ฟ๐˜€ ๐˜„๐—ถ๐˜๐—ต๐—ผ๐˜‚๐˜ ๐—ก๐—ผ๐—ฟ๐—บ๐—ฎ๐—น๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป

โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘7โค3
Forwarded from Thomas
๐ŸŽโ—๏ธTODAY FREEโ—๏ธ๐ŸŽ

Entry to our VIP channel is completely free today. Tomorrow it will cost $500! ๐Ÿ”ฅ

JOIN ๐Ÿ‘‡

https://t.iss.one/+VKT2Gy3kE6A4NTE5
https://t.iss.one/+VKT2Gy3kE6A4NTE5
https://t.iss.one/+VKT2Gy3kE6A4NTE5
โค1๐Ÿ‘1
Statistics Notes ๐Ÿ“ .pdf
4.7 MB
Best Statistics Notes โœ…

โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘3โค1
No one can explain Transformers and Self-Attention like Professor Bryce.

A true hidden gem on YouTubeโ€”his videos are clear, insightful, and packed with knowledge. And the best part? He teaches with genuine passion and dedication that makes even the toughest concepts easy to grasp.

Really worth it to take a look ๐Ÿ–•

Highly underrated.

Link: https://www.youtube.com/watch?v=e9-0BxyKG10

โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ”ฅ6โค5๐Ÿ‘3