Data Science Machine Learning Data Analysis
38.6K subscribers
3.59K photos
31 videos
39 files
1.27K links
ads: @HusseinSheikho

This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
Download Telegram
✨ Adversarial Learning with Keras and TensorFlow (Part 3): Exploring Adversarial Attacks Using Neural Structured Learning (NSL) ✨

πŸ“– Table of Contents Adversarial Learning with Keras and TensorFlow (Part 3): Exploring Adversarial Attacks Using Neural Structured Learning (NSL) Introduction to Advanced Adversarial Techniques in Machine Learning Harnessing NSL for Robust Model Training: Insights from Part 2 Deep Dive into…...

🏷️ #AdversarialLearning #DeepLearning #ImageProcessing #Keras #MachineLearning #NeuralNetworks #NeuralStructuredLearning #TensorFlow #Tutorial
✨ CycleGAN: Unpaired Image-to-Image Translation (Part 1) ✨

πŸ“– Table of Contents CycleGAN: Unpaired Image-to-Image Translation (Part 1) Introduction Unpaired Image Translation CycleGAN Pipeline and Training Loss Formulation Adversarial Loss Cycle Consistency Summary Citation Information CycleGAN: Unpaired Image-to-Image Translation (Part 1) In this tutorial, yo...

🏷️ #ComputerVision #CycleGAN #DeepLearning #Keras #KerasandTensorFlow #TensorFlow #UnpairedImageTranslation
πŸ’‘ Building a Simple Convolutional Neural Network (CNN)

Constructing a basic Convolutional Neural Network (CNN) is a fundamental step in deep learning for image processing. Using TensorFlow's Keras API, we can define a network with convolutional, pooling, and dense layers to classify images. This example sets up a simple CNN to recognize handwritten digits from the MNIST dataset.

import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
import numpy as np

# 1. Load and preprocess the MNIST dataset
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Reshape images for CNN: (batch_size, height, width, channels)
# MNIST images are 28x28 grayscale, so channels = 1
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255

# 2. Define the CNN architecture
model = models.Sequential()

# First Convolutional Block
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))

# Second Convolutional Block
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))

# Flatten the 3D output to 1D for the Dense layers
model.add(layers.Flatten())

# Dense (fully connected) layers
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax')) # Output layer for 10 classes (digits 0-9)

# 3. Compile the model
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

# Print a summary of the model layers
model.summary()

# 4. Train the model (uncomment to run training)
# print("\nTraining the model...")
# model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_split=0.1)

# 5. Evaluate the model (uncomment to run evaluation)
# print("\nEvaluating the model...")
# test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
# print(f"Test accuracy: {test_acc:.4f}")


Code explanation: This script defines a simple CNN using Keras. It loads and normalizes MNIST images. The Sequential model adds Conv2D layers for feature extraction, MaxPooling2D for downsampling, a Flatten layer to transition to 1D, and Dense layers for classification. The model is then compiled with an optimizer, loss function, and metrics, and a summary of its architecture is printed. Training and evaluation steps are included as commented-out examples.

#Python #DeepLearning #CNN #Keras #TensorFlow

━━━━━━━━━━━━━━━
By: @DataScienceM ✨
#CNN #DeepLearning #Python #Tutorial

Lesson: Building a Convolutional Neural Network (CNN) for Image Classification

This lesson will guide you through building a CNN from scratch using TensorFlow and Keras to classify images from the CIFAR-10 dataset.

---

Part 1: Setup and Data Loading

First, we import the necessary libraries and load the CIFAR-10 dataset. This dataset contains 60,000 32x32 color images in 10 classes.

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
import numpy as np

# Load the CIFAR-10 dataset
(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()

# Check the shape of the data
print("Training data shape:", x_train.shape)
print("Test data shape:", x_test.shape)

#TensorFlow #Keras #DataLoading

---

Part 2: Data Exploration and Preprocessing

We need to prepare the data before feeding it to the network. This involves:
β€’ Normalization: Scaling pixel values from the 0-255 range to the 0-1 range.
β€’ One-Hot Encoding: Converting class vectors (integers) to a binary matrix.

Let's also visualize some images to understand our data.

# Define class names for CIFAR-10
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

# Visualize a few images
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(x_train[i])
plt.xlabel(class_names[y_train[i][0]])
plt.show()

# Normalize pixel values to be between 0 and 1
x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0

# One-hot encode the labels
y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)
y_test = tf.keras.utils.to_categorical(y_test, num_classes=10)

#DataPreprocessing #Normalization #Visualization

---

Part 3: Building the CNN Model

Now, we'll construct our CNN model. A common architecture consists of a stack of Conv2D and MaxPooling2D layers, followed by Dense layers for classification.

β€’ Conv2D: Extracts features (like edges, corners) from the input image.
β€’ MaxPooling2D: Reduces the spatial dimensions (downsampling), which helps in making the feature detection more robust.
β€’ Flatten: Converts the 2D feature maps into a 1D vector.
β€’ Dense: A standard fully-connected neural network layer.

model = models.Sequential()

# Convolutional Base
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))

# Flatten and Dense Layers
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax')) # 10 output classes

# Print the model summary
model.summary()

#ModelBuilding #CNN #KerasLayers

---

Part 4: Compiling the Model

Before training, we need to configure the learning process. This is done via the compile() method, which requires:
β€’ Optimizer: An algorithm to update the model's weights (e.g., 'adam').
β€’ Loss Function: A function to measure how inaccurate the model is during training (e.g., 'categorical_crossentropy' for multi-class classification).
β€’ Metrics: Used to monitor the training and testing steps (e.g., 'accuracy').

model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])

#ModelCompilation #Optimizer #LossFunction

---