Forwarded from Python | Machine Learning | Coding | R
"Introduction to Probability for Data Science"
One of the best books on #Probability. Available FREE.
Download the book:
probability4datascience.com/download.html
One of the best books on #Probability. Available FREE.
Download the book:
probability4datascience.com/download.html
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.iss.one/CodeProgrammerβ
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
π7β€2
β¨ Adversarial Learning with Keras and TensorFlow (Part 3): Exploring Adversarial Attacks Using Neural Structured Learning (NSL) β¨
π Table of Contents Adversarial Learning with Keras and TensorFlow (Part 3): Exploring Adversarial Attacks Using Neural Structured Learning (NSL) Introduction to Advanced Adversarial Techniques in Machine Learning Harnessing NSL for Robust Model Training: Insights from Part 2 Deep Dive intoβ¦...
π·οΈ #AdversarialLearning #DeepLearning #ImageProcessing #Keras #MachineLearning #NeuralNetworks #NeuralStructuredLearning #TensorFlow #Tutorial
π Table of Contents Adversarial Learning with Keras and TensorFlow (Part 3): Exploring Adversarial Attacks Using Neural Structured Learning (NSL) Introduction to Advanced Adversarial Techniques in Machine Learning Harnessing NSL for Robust Model Training: Insights from Part 2 Deep Dive intoβ¦...
π·οΈ #AdversarialLearning #DeepLearning #ImageProcessing #Keras #MachineLearning #NeuralNetworks #NeuralStructuredLearning #TensorFlow #Tutorial
β¨ CycleGAN: Unpaired Image-to-Image Translation (Part 1) β¨
π Table of Contents CycleGAN: Unpaired Image-to-Image Translation (Part 1) Introduction Unpaired Image Translation CycleGAN Pipeline and Training Loss Formulation Adversarial Loss Cycle Consistency Summary Citation Information CycleGAN: Unpaired Image-to-Image Translation (Part 1) In this tutorial, yo...
π·οΈ #ComputerVision #CycleGAN #DeepLearning #Keras #KerasandTensorFlow #TensorFlow #UnpairedImageTranslation
π Table of Contents CycleGAN: Unpaired Image-to-Image Translation (Part 1) Introduction Unpaired Image Translation CycleGAN Pipeline and Training Loss Formulation Adversarial Loss Cycle Consistency Summary Citation Information CycleGAN: Unpaired Image-to-Image Translation (Part 1) In this tutorial, yo...
π·οΈ #ComputerVision #CycleGAN #DeepLearning #Keras #KerasandTensorFlow #TensorFlow #UnpairedImageTranslation
π‘ Building a Simple Convolutional Neural Network (CNN)
Constructing a basic Convolutional Neural Network (CNN) is a fundamental step in deep learning for image processing. Using TensorFlow's Keras API, we can define a network with convolutional, pooling, and dense layers to classify images. This example sets up a simple CNN to recognize handwritten digits from the MNIST dataset.
Code explanation: This script defines a simple CNN using Keras. It loads and normalizes MNIST images. The
#Python #DeepLearning #CNN #Keras #TensorFlow
βββββββββββββββ
By: @DataScienceM β¨
Constructing a basic Convolutional Neural Network (CNN) is a fundamental step in deep learning for image processing. Using TensorFlow's Keras API, we can define a network with convolutional, pooling, and dense layers to classify images. This example sets up a simple CNN to recognize handwritten digits from the MNIST dataset.
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
import numpy as np
# 1. Load and preprocess the MNIST dataset
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# Reshape images for CNN: (batch_size, height, width, channels)
# MNIST images are 28x28 grayscale, so channels = 1
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255
# 2. Define the CNN architecture
model = models.Sequential()
# First Convolutional Block
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
# Second Convolutional Block
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# Flatten the 3D output to 1D for the Dense layers
model.add(layers.Flatten())
# Dense (fully connected) layers
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax')) # Output layer for 10 classes (digits 0-9)
# 3. Compile the model
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# Print a summary of the model layers
model.summary()
# 4. Train the model (uncomment to run training)
# print("\nTraining the model...")
# model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_split=0.1)
# 5. Evaluate the model (uncomment to run evaluation)
# print("\nEvaluating the model...")
# test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
# print(f"Test accuracy: {test_acc:.4f}")
Code explanation: This script defines a simple CNN using Keras. It loads and normalizes MNIST images. The
Sequential model adds Conv2D layers for feature extraction, MaxPooling2D for downsampling, a Flatten layer to transition to 1D, and Dense layers for classification. The model is then compiled with an optimizer, loss function, and metrics, and a summary of its architecture is printed. Training and evaluation steps are included as commented-out examples.#Python #DeepLearning #CNN #Keras #TensorFlow
βββββββββββββββ
By: @DataScienceM β¨
#CNN #DeepLearning #Python #Tutorial
Lesson: Building a Convolutional Neural Network (CNN) for Image Classification
This lesson will guide you through building a CNN from scratch using TensorFlow and Keras to classify images from the CIFAR-10 dataset.
---
Part 1: Setup and Data Loading
First, we import the necessary libraries and load the CIFAR-10 dataset. This dataset contains 60,000 32x32 color images in 10 classes.
#TensorFlow #Keras #DataLoading
---
Part 2: Data Exploration and Preprocessing
We need to prepare the data before feeding it to the network. This involves:
β’ Normalization: Scaling pixel values from the 0-255 range to the 0-1 range.
β’ One-Hot Encoding: Converting class vectors (integers) to a binary matrix.
Let's also visualize some images to understand our data.
#DataPreprocessing #Normalization #Visualization
---
Part 3: Building the CNN Model
Now, we'll construct our CNN model. A common architecture consists of a stack of
β’ Conv2D: Extracts features (like edges, corners) from the input image.
β’ MaxPooling2D: Reduces the spatial dimensions (downsampling), which helps in making the feature detection more robust.
β’ Flatten: Converts the 2D feature maps into a 1D vector.
β’ Dense: A standard fully-connected neural network layer.
#ModelBuilding #CNN #KerasLayers
---
Part 4: Compiling the Model
Before training, we need to configure the learning process. This is done via the
β’ Optimizer: An algorithm to update the model's weights (e.g., 'adam').
β’ Loss Function: A function to measure how inaccurate the model is during training (e.g., 'categorical_crossentropy' for multi-class classification).
β’ Metrics: Used to monitor the training and testing steps (e.g., 'accuracy').
#ModelCompilation #Optimizer #LossFunction
---
Lesson: Building a Convolutional Neural Network (CNN) for Image Classification
This lesson will guide you through building a CNN from scratch using TensorFlow and Keras to classify images from the CIFAR-10 dataset.
---
Part 1: Setup and Data Loading
First, we import the necessary libraries and load the CIFAR-10 dataset. This dataset contains 60,000 32x32 color images in 10 classes.
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
import numpy as np
# Load the CIFAR-10 dataset
(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()
# Check the shape of the data
print("Training data shape:", x_train.shape)
print("Test data shape:", x_test.shape)
#TensorFlow #Keras #DataLoading
---
Part 2: Data Exploration and Preprocessing
We need to prepare the data before feeding it to the network. This involves:
β’ Normalization: Scaling pixel values from the 0-255 range to the 0-1 range.
β’ One-Hot Encoding: Converting class vectors (integers) to a binary matrix.
Let's also visualize some images to understand our data.
# Define class names for CIFAR-10
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
# Visualize a few images
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(x_train[i])
plt.xlabel(class_names[y_train[i][0]])
plt.show()
# Normalize pixel values to be between 0 and 1
x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0
# One-hot encode the labels
y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)
y_test = tf.keras.utils.to_categorical(y_test, num_classes=10)
#DataPreprocessing #Normalization #Visualization
---
Part 3: Building the CNN Model
Now, we'll construct our CNN model. A common architecture consists of a stack of
Conv2D and MaxPooling2D layers, followed by Dense layers for classification.β’ Conv2D: Extracts features (like edges, corners) from the input image.
β’ MaxPooling2D: Reduces the spatial dimensions (downsampling), which helps in making the feature detection more robust.
β’ Flatten: Converts the 2D feature maps into a 1D vector.
β’ Dense: A standard fully-connected neural network layer.
model = models.Sequential()
# Convolutional Base
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
# Flatten and Dense Layers
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax')) # 10 output classes
# Print the model summary
model.summary()
#ModelBuilding #CNN #KerasLayers
---
Part 4: Compiling the Model
Before training, we need to configure the learning process. This is done via the
compile() method, which requires:β’ Optimizer: An algorithm to update the model's weights (e.g., 'adam').
β’ Loss Function: A function to measure how inaccurate the model is during training (e.g., 'categorical_crossentropy' for multi-class classification).
β’ Metrics: Used to monitor the training and testing steps (e.g., 'accuracy').
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
#ModelCompilation #Optimizer #LossFunction
---