๐ Vision Transformer (ViT) Tutorial โ Part 5: Efficient Vision Transformers โ MobileViT, TinyViT & Edge Deployment
Read lesson: https://hackmd.io/@husseinsheikho/vit-5
#MobileViT #TinyViT #EfficientViT #EdgeAI #ModelOptimization #ONNX #TensorRT #TorchServe #DeepLearning #ComputerVision #Transformers
Read lesson: https://hackmd.io/@husseinsheikho/vit-5
#MobileViT #TinyViT #EfficientViT #EdgeAI #ModelOptimization #ONNX #TensorRT #TorchServe #DeepLearning #ComputerVision #Transformers
โ๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2
๐ Why Weโve Been Optimizing the Wrong Thing in LLMs for Years
๐ Category: LARGE LANGUAGE MODELS
๐ Date: 2025-11-28 | โฑ๏ธ Read time: 14 min read
LLM development may have been focused on the wrong optimization targets for years. A new analysis reveals that a simple shift in the training process is the key to unlocking significant improvements. This approach reportedly leads to models with enhanced foresight, faster inference speeds, and substantially better reasoning abilities, challenging conventional development practices.
#LLM #AITraining #ModelOptimization #AI #Inference
๐ Category: LARGE LANGUAGE MODELS
๐ Date: 2025-11-28 | โฑ๏ธ Read time: 14 min read
LLM development may have been focused on the wrong optimization targets for years. A new analysis reveals that a simple shift in the training process is the key to unlocking significant improvements. This approach reportedly leads to models with enhanced foresight, faster inference speeds, and substantially better reasoning abilities, challenging conventional development practices.
#LLM #AITraining #ModelOptimization #AI #Inference
โค2