Machine Learning
39.6K subscribers
3.94K photos
34 videos
46 files
1.33K links
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
4 learning paradigms in machine learning, explained visually:

1. Transfer Learning
2. Fine-tuning
3. Multi-task Learning
4. Federated Learning

๐Ÿ‘‰ @DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2
๐Ÿ“Œ How to Leverage Slash Commands to Code Effectively

๐Ÿ—‚ Category: LLM APPLICATIONS

๐Ÿ•’ Date: 2026-01-11 | โฑ๏ธ Read time: 8 min read

Learn how I utilize slash commands to be a more efficient engineer

#DataScience #AI #Python
๐Š_๐๐ž๐š๐ซ๐ž๐ฌ๐ญ_๐๐ž๐ข๐ ๐ก๐›๐จ๐ซ๐ฌ_๐Š๐๐โฃ.pdf
2.4 MB
๐Ÿง  ๐Š-๐๐ž๐š๐ซ๐ž๐ฌ๐ญ ๐๐ž๐ข๐ ๐ก๐›๐จ๐ซ๐ฌ (๐Š๐๐)โฃ

๐Ÿ”น ๐–๐ก๐š๐ญ ๐ˆ ๐œ๐จ๐ฏ๐ž๐ซ๐ž๐ ๐ญ๐จ๐๐š๐ฒโฃ
๐–๐ก๐š๐ญ ๐Š๐๐ ๐ข๐ฌ ๐š๐ง๐ ๐ก๐จ๐ฐ ๐ข๐ญ ๐ฐ๐จ๐ซ๐ค๐ฌโฃ
๐ƒ๐ข๐Ÿ๐Ÿ๐ž๐ซ๐ž๐ง๐œ๐ž ๐›๐ž๐ญ๐ฐ๐ž๐ž๐ง ๐Š๐๐ ๐Ÿ๐จ๐ซ ๐‚๐ฅ๐š๐ฌ๐ฌ๐ข๐Ÿ๐ข๐œ๐š๐ญ๐ข๐จ๐ง ๐ฏ๐ฌ ๐‘๐ž๐ ๐ซ๐ž๐ฌ๐ฌ๐ข๐จ๐งโฃ
๐‘๐จ๐ฅ๐ž ๐จ๐Ÿ ๐Š (๐ก๐ฒ๐ฉ๐ž๐ซ๐ฉ๐š๐ซ๐š๐ฆ๐ž๐ญ๐ž๐ซ)โฃ
๐ƒ๐ข๐ฌ๐ญ๐š๐ง๐œ๐ž ๐ฆ๐ž๐ญ๐ซ๐ข๐œ๐ฌ: ๐„๐ฎ๐œ๐ฅ๐ข๐๐ž๐š๐ง ๐ฏ๐ฌ ๐Œ๐š๐ง๐ก๐š๐ญ๐ญ๐š๐งโฃ
๐–๐ก๐ฒ ๐Š๐๐ ๐ข๐ฌ ๐œ๐š๐ฅ๐ฅ๐ž๐ ๐š ๐ฅ๐š๐ณ๐ฒ / ๐ข๐ง๐ฌ๐ญ๐š๐ง๐œ๐ž-๐›๐š๐ฌ๐ž๐ ๐ฅ๐ž๐š๐ซ๐ง๐ž๐ซโฃ
โฃ
๐ŸŽฏ ๐“๐จ๐ฉ ๐Ÿ๐ŸŽ ๐ˆ๐ง๐ญ๐ž๐ซ๐ฏ๐ข๐ž๐ฐ ๐๐ฎ๐ž๐ฌ๐ญ๐ข๐จ๐ง๐ฌ (๐Œ๐ฎ๐ฌ๐ญ-๐Š๐ง๐จ๐ฐ)โฃ
โฃ
1๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜’-๐˜•๐˜ฆ๐˜ข๐˜ณ๐˜ฆ๐˜ด๐˜ต ๐˜•๐˜ฆ๐˜ช๐˜จ๐˜ฉ๐˜ฃ๐˜ฐ๐˜ณ๐˜ด (๐˜’๐˜•๐˜•)?โฃ
2๏ธโƒฃ ๐˜ž๐˜ฉ๐˜บ ๐˜ช๐˜ด ๐˜’๐˜•๐˜• ๐˜ค๐˜ข๐˜ญ๐˜ญ๐˜ฆ๐˜ฅ ๐˜ข ๐˜ญ๐˜ข๐˜ป๐˜บ ๐˜ญ๐˜ฆ๐˜ข๐˜ณ๐˜ฏ๐˜ช๐˜ฏ๐˜จ ๐˜ข๐˜ญ๐˜จ๐˜ฐ๐˜ณ๐˜ช๐˜ต๐˜ฉ๐˜ฎ?โฃ
3๏ธโƒฃ ๐˜‹๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ค๐˜ฆ ๐˜ฃ๐˜ฆ๐˜ต๐˜ธ๐˜ฆ๐˜ฆ๐˜ฏ ๐˜’๐˜•๐˜• ๐˜ค๐˜ญ๐˜ข๐˜ด๐˜ด๐˜ช๐˜ง๐˜ช๐˜ค๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜ข๐˜ฏ๐˜ฅ ๐˜’๐˜•๐˜• ๐˜ณ๐˜ฆ๐˜จ๐˜ณ๐˜ฆ๐˜ด๐˜ด๐˜ช๐˜ฐ๐˜ฏ?โฃ
4๏ธโƒฃ ๐˜๐˜ฐ๐˜ธ ๐˜ฅ๐˜ฐ ๐˜บ๐˜ฐ๐˜ถ ๐˜ค๐˜ฉ๐˜ฐ๐˜ฐ๐˜ด๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ท๐˜ข๐˜ญ๐˜ถ๐˜ฆ ๐˜ฐ๐˜ง ๐˜’?โฃ
5๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ฉ๐˜ข๐˜ฑ๐˜ฑ๐˜ฆ๐˜ฏ๐˜ด ๐˜ธ๐˜ฉ๐˜ฆ๐˜ฏ ๐˜’ ๐˜ช๐˜ด ๐˜ต๐˜ฐ๐˜ฐ ๐˜ด๐˜ฎ๐˜ข๐˜ญ๐˜ญ ๐˜ฐ๐˜ณ ๐˜ต๐˜ฐ๐˜ฐ ๐˜ญ๐˜ข๐˜ณ๐˜จ๐˜ฆ?โฃ
6๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ฅ๐˜ช๐˜ด๐˜ต๐˜ข๐˜ฏ๐˜ค๐˜ฆ ๐˜ฎ๐˜ฆ๐˜ต๐˜ณ๐˜ช๐˜ค๐˜ด ๐˜ข๐˜ณ๐˜ฆ ๐˜ค๐˜ฐ๐˜ฎ๐˜ฎ๐˜ฐ๐˜ฏ๐˜ญ๐˜บ ๐˜ถ๐˜ด๐˜ฆ๐˜ฅ ๐˜ช๐˜ฏ ๐˜’๐˜•๐˜•?โฃ
7๏ธโƒฃ ๐˜ž๐˜ฉ๐˜บ ๐˜ฅ๐˜ฐ๐˜ฆ๐˜ด ๐˜’๐˜•๐˜• ๐˜ฑ๐˜ฆ๐˜ณ๐˜ง๐˜ฐ๐˜ณ๐˜ฎ ๐˜ฑ๐˜ฐ๐˜ฐ๐˜ณ๐˜ญ๐˜บ ๐˜ฐ๐˜ฏ ๐˜ฉ๐˜ช๐˜จ๐˜ฉ-๐˜ฅ๐˜ช๐˜ฎ๐˜ฆ๐˜ฏ๐˜ด๐˜ช๐˜ฐ๐˜ฏ๐˜ข๐˜ญ ๐˜ฅ๐˜ข๐˜ต๐˜ข?โฃ
8๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜ต๐˜ฉ๐˜ฆ ๐˜ต๐˜ช๐˜ฎ๐˜ฆ ๐˜ค๐˜ฐ๐˜ฎ๐˜ฑ๐˜ญ๐˜ฆ๐˜น๐˜ช๐˜ต๐˜บ ๐˜ฐ๐˜ง ๐˜’๐˜•๐˜•?โฃ
9๏ธโƒฃ ๐˜๐˜ฐ๐˜ธ ๐˜ฅ๐˜ฐ ๐˜’๐˜‹-๐˜›๐˜ณ๐˜ฆ๐˜ฆ ๐˜ข๐˜ฏ๐˜ฅ ๐˜‰๐˜ข๐˜ญ๐˜ญ-๐˜›๐˜ณ๐˜ฆ๐˜ฆ ๐˜ช๐˜ฎ๐˜ฑ๐˜ณ๐˜ฐ๐˜ท๐˜ฆ ๐˜’๐˜•๐˜• ๐˜ฑ๐˜ฆ๐˜ณ๐˜ง๐˜ฐ๐˜ณ๐˜ฎ๐˜ข๐˜ฏ๐˜ค๐˜ฆ?โฃ
๐Ÿ”Ÿ ๐˜ž๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ด๐˜ฉ๐˜ฐ๐˜ถ๐˜ญ๐˜ฅ ๐˜บ๐˜ฐ๐˜ถ ๐˜ข๐˜ท๐˜ฐ๐˜ช๐˜ฅ ๐˜ถ๐˜ด๐˜ช๐˜ฏ๐˜จ #๐˜’๐˜•๐˜•?โฃ

https://t.iss.one/CodeProgrammer โญ๏ธ
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3
๐Ÿ“Œ How AI Can Become Your Personal Language Tutor

๐Ÿ—‚ Category: ARTIFICIAL INTELLIGENCE

๐Ÿ•’ Date: 2026-01-12 | โฑ๏ธ Read time: 11 min read

How I used n8n to build AI study partners for learning Mandarin: vocabulary, listening, andโ€ฆ

#DataScience #AI #Python
โค2
These Google Colab-notebooks help to implement all machine learning algorithms from scratch ๐Ÿคฏ

Repo: https://udlbook.github.io/udlbook/


๐Ÿ‘‰ @codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4
๐Ÿ“Œ Why 90% Accuracy in Text-to-SQL is 100% Useless

๐Ÿ—‚ Category: LARGE LANGUAGE MODELS

๐Ÿ•’ Date: 2026-01-12 | โฑ๏ธ Read time: 9 min read

The eternal promise of self-service analytics

#DataScience #AI #Python
๐Ÿ“Œ When Does Adding Fancy RAG Features Work?

๐Ÿ—‚ Category: LARGE LANGUAGE MODELS

๐Ÿ•’ Date: 2026-01-12 | โฑ๏ธ Read time: 23 min read

Looking at the performance of different pipelines

#DataScience #AI #Python
๐Ÿ“Œ Optimizing Data Transfer in Batched AI/ML Inference Workloads

๐Ÿ—‚ Category: DATA ENGINEERING

๐Ÿ•’ Date: 2026-01-12 | โฑ๏ธ Read time: 13 min read

A deep dive on data transfer bottlenecks, their identification, and their resolution with the helpโ€ฆ

#DataScience #AI #Python
โค1
๐Ÿ“Œ Why Your ML Model Works in Training But Fails in Production

๐Ÿ—‚ Category: ARTIFICIAL INTELLIGENCE

๐Ÿ•’ Date: 2026-01-13 | โฑ๏ธ Read time: 8 min read

Hard lessons from building production ML systems where data leaks, defaults lie, populations shift, andโ€ฆ

#DataScience #AI #Python
โค3
๐Ÿ“Œ How to Maximize Claude Code Effectiveness

๐Ÿ—‚ Category: AGENTIC AI

๐Ÿ•’ Date: 2026-01-13 | โฑ๏ธ Read time: 9 min read

Learn how to get the most out of agentic coding

#DataScience #AI #Python
โค2
โšก๏ธ All cheat sheets for programmers in one place.

There's a lot of useful stuff inside: short, clear tips on languages, technologies, and frameworks.

No registration required and it's free.

https://overapi.com/

#python #php #Database #DataAnalysis #MachineLearning #AI #DeepLearning #LLMS

https://t.iss.one/CodeProgrammer โšก๏ธ
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4
๐Ÿ“Œ An introduction to AWS Bedrock

๐Ÿ—‚ Category: ARTIFICIAL INTELLIGENCE

๐Ÿ•’ Date: 2026-01-13 | โฑ๏ธ Read time: 13 min read

The how, why, what and where of Amazonโ€™s LLM access layer

#DataScience #AI #Python
๐Ÿ“Œ From โ€˜Dataslowsโ€™ to Dataflows: The Gen2 Performance Revolution in Microsoft Fabric

๐Ÿ—‚ Category: DATA ENGINEERING

๐Ÿ•’ Date: 2026-01-13 | โฑ๏ธ Read time: 8 min read

Dataflows were (rightly?) considered โ€œthe slowest and least performant optionโ€ for ingesting data into Powerโ€ฆ

#DataScience #AI #Python