๐ The Machine Learning โAdvent Calendarโ Day 20: Gradient Boosted Linear Regression in Excel
๐ Category: MACHINE LEARNING
๐ Date: 2025-12-22 | โฑ๏ธ Read time: 10 min read
From Random Ensembles to Optimization: Gradient Boosting Explained
#DataScience #AI #Python
๐ Category: MACHINE LEARNING
๐ Date: 2025-12-22 | โฑ๏ธ Read time: 10 min read
From Random Ensembles to Optimization: Gradient Boosting Explained
#DataScience #AI #Python
โค1
๐ ChatLLM Presents a Streamlined Solution to Addressing the Real Bottleneck in AI
๐ Category: SPONSORED CONTENT
๐ Date: 2025-12-22 | โฑ๏ธ Read time: 8 min read
For the last couple of years, a lot of the conversation around AI has revolvedโฆ
#DataScience #AI #Python
๐ Category: SPONSORED CONTENT
๐ Date: 2025-12-22 | โฑ๏ธ Read time: 8 min read
For the last couple of years, a lot of the conversation around AI has revolvedโฆ
#DataScience #AI #Python
โค2
๐ The Machine Learning โAdvent Calendarโ Day 23: CNN in Excel
๐ Category: MACHINE LEARNING
๐ Date: 2025-12-23 | โฑ๏ธ Read time: 8 min read
A step-by-step 1D CNN for text, built in Excel, where every filter, weight, and decisionโฆ
#DataScience #AI #Python
๐ Category: MACHINE LEARNING
๐ Date: 2025-12-23 | โฑ๏ธ Read time: 8 min read
A step-by-step 1D CNN for text, built in Excel, where every filter, weight, and decisionโฆ
#DataScience #AI #Python
๐ How Agents Plan Tasks with To-Do Lists
๐ Category: AGENTIC AI
๐ Date: 2025-12-23 | โฑ๏ธ Read time: 7 min read
Understanding the process behind agentic planning and task management in LangChain
#DataScience #AI #Python
๐ Category: AGENTIC AI
๐ Date: 2025-12-23 | โฑ๏ธ Read time: 7 min read
Understanding the process behind agentic planning and task management in LangChain
#DataScience #AI #Python
โค2๐ฅ1
๐ Stop Retraining Blindly: Use PSI to Build a Smarter Monitoring Pipeline
๐ Category: MACHINE LEARNING
๐ Date: 2025-12-23 | โฑ๏ธ Read time: 6 min read
A data scientistโs guide to population stability index (PSI)
#DataScience #AI #Python
๐ Category: MACHINE LEARNING
๐ Date: 2025-12-23 | โฑ๏ธ Read time: 6 min read
A data scientistโs guide to population stability index (PSI)
#DataScience #AI #Python
๐ฅ1
๐ The Machine Learning โAdvent Calendarโ Day 24: Transformers for Text in Excel
๐ Category: MACHINE LEARNING
๐ Date: 2025-12-24 | โฑ๏ธ Read time: 10 min read
An intuitive, step-by-step look at how Transformers use self-attention to turn static word embeddings intoโฆ
#DataScience #AI #Python
๐ Category: MACHINE LEARNING
๐ Date: 2025-12-24 | โฑ๏ธ Read time: 10 min read
An intuitive, step-by-step look at how Transformers use self-attention to turn static word embeddings intoโฆ
#DataScience #AI #Python
๐1
๐ Is Your Model Time-Blind? The Case for Cyclical Feature Encoding
๐ Category: DATA SCIENCE
๐ Date: 2025-12-24 | โฑ๏ธ Read time: 7 min read
How cyclical encoding improves machine learning prediction
#DataScience #AI #Python
๐ Category: DATA SCIENCE
๐ Date: 2025-12-24 | โฑ๏ธ Read time: 7 min read
How cyclical encoding improves machine learning prediction
#DataScience #AI #Python
๐ 4 Techniques to Optimize AI Coding Efficiency
๐ Category: PROGRAMMING
๐ Date: 2025-12-24 | โฑ๏ธ Read time: 8 min read
Learn how to code more effectively using AI
#DataScience #AI #Python
๐ Category: PROGRAMMING
๐ Date: 2025-12-24 | โฑ๏ธ Read time: 8 min read
Learn how to code more effectively using AI
#DataScience #AI #Python
โค3
๐ Bonferroni vs. Benjamini-Hochberg: Choosing Your P-Value Correction
๐ Category: STATISTICS
๐ Date: 2025-12-24 | โฑ๏ธ Read time: 11 min read
Multiple hypothesis testing, P-values, and Monte Carlo
#DataScience #AI #Python
๐ Category: STATISTICS
๐ Date: 2025-12-24 | โฑ๏ธ Read time: 11 min read
Multiple hypothesis testing, P-values, and Monte Carlo
#DataScience #AI #Python
โค2
๐ Keeping Probabilities Honest: The Jacobian Adjustment
๐ Category: DATA SCIENCE
๐ Date: 2025-12-25 | โฑ๏ธ Read time: 10 min read
An intuitive explanation of transforming random variables correctly.
#DataScience #AI #Python
๐ Category: DATA SCIENCE
๐ Date: 2025-12-25 | โฑ๏ธ Read time: 10 min read
An intuitive explanation of transforming random variables correctly.
#DataScience #AI #Python
โค1
๐ Why MAP and MRR Fail for Search Ranking (and What to Use Instead)
๐ Category: DATA SCIENCE
๐ Date: 2025-12-25 | โฑ๏ธ Read time: 9 min read
MAP and MRR look intuitive, but they quietly break ranking evaluation. Hereโs why these metricsโฆ
#DataScience #AI #Python
๐ Category: DATA SCIENCE
๐ Date: 2025-12-25 | โฑ๏ธ Read time: 9 min read
MAP and MRR look intuitive, but they quietly break ranking evaluation. Hereโs why these metricsโฆ
#DataScience #AI #Python
โค1
Forwarded from ML Research Hub
ML Engineers: NVIDIA has released a guide for beginners on fine-tuning LLMs using Unsloth.
The guide covers:
- training methods: LoRA, FFT, RL
- when and why to do fine-tuning, real use cases
- how much data and VRAM are required
- how to train locally on DGX Spark, RTX graphics cards, and more
Guide: https://blogs.nvidia.com/blog/rtx-ai-garage-fine-tuning-unsloth-dgx-spark/
๐ https://t.iss.one/DataScienceT
The guide covers:
- training methods: LoRA, FFT, RL
- when and why to do fine-tuning, real use cases
- how much data and VRAM are required
- how to train locally on DGX Spark, RTX graphics cards, and more
Guide: https://blogs.nvidia.com/blog/rtx-ai-garage-fine-tuning-unsloth-dgx-spark/
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2๐1
๐ Think Your Python Code Is Slow? Stop Guessing and Start Measuring
๐ Category: PROGRAMMING
๐ Date: 2025-12-26 | โฑ๏ธ Read time: 13 min read
A hands-on tour of using cProfile + SnakeViz to find (and fix) the โhotโ pathsโฆ
#DataScience #AI #Python
๐ Category: PROGRAMMING
๐ Date: 2025-12-26 | โฑ๏ธ Read time: 13 min read
A hands-on tour of using cProfile + SnakeViz to find (and fix) the โhotโ pathsโฆ
#DataScience #AI #Python
โค3
๐ How to Build an AI-Powered Weather ETL Pipeline with Databricks and GPT-4o: From API To Dashboard
๐ Category: DATA ENGINEERING
๐ Date: 2025-12-26 | โฑ๏ธ Read time: 11 min read
A step-by-step guide from weather API ETL to dashboard on Databricks
#DataScience #AI #Python
๐ Category: DATA ENGINEERING
๐ Date: 2025-12-26 | โฑ๏ธ Read time: 11 min read
A step-by-step guide from weather API ETL to dashboard on Databricks
#DataScience #AI #Python
โค2
Mcp_Chapter_11.pdf
1.2 MB
โค3๐1
Forwarded from Machine Learning with Python
transformer Q&A.pdf
1.3 MB
๐๐๐ซ๐โ๐ฌ ๐ ๐ช๐ฎ๐ข๐๐ค ๐๐ซ๐๐๐ค๐๐จ๐ฐ๐ง ๐๐ซ๐จ๐ฆ ๐ญ๐ก๐ ๐ญ๐จ๐ฉ ๐๐ซ๐๐ง๐ฌ๐๐จ๐ซ๐ฆ๐๐ซ๐ฌ ๐๐ง๐ญ๐๐ซ๐ฏ๐ข๐๐ฐ ๐๐ฎ๐๐ฌ๐ญ๐ข๐จ๐ง๐ฌ ๐ฅ๐โฃโฃ
โฃโฃ
โ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ข ๐๐ณ๐ข๐ฏ๐ด๐ง๐ฐ๐ณ๐ฎ๐ฆ๐ณ ๐ข๐ฏ๐ฅ ๐ธ๐ฉ๐บ ๐ธ๐ข๐ด ๐ช๐ต ๐ช๐ฏ๐ต๐ณ๐ฐ๐ฅ๐ถ๐ค๐ฆ๐ฅ?โฃโฃ
๐๐ต ๐ด๐ฐ๐ญ๐ท๐ฆ๐ฅ ๐ต๐ฉ๐ฆ ๐ญ๐ช๐ฎ๐ช๐ต๐ข๐ต๐ช๐ฐ๐ฏ๐ด ๐ฐ๐ง ๐๐๐๐ด & ๐๐๐๐๐ด ๐ฃ๐บ ๐ถ๐ด๐ช๐ฏ๐จ ๐ด๐ฆ๐ญ๐ง-๐ข๐ต๐ต๐ฆ๐ฏ๐ต๐ช๐ฐ๐ฏ, ๐ฆ๐ฏ๐ข๐ฃ๐ญ๐ช๐ฏ๐จ ๐ฑ๐ข๐ณ๐ข๐ญ๐ญ๐ฆ๐ญ ๐ฑ๐ณ๐ฐ๐ค๐ฆ๐ด๐ด๐ช๐ฏ๐จ ๐ข๐ฏ๐ฅ ๐ค๐ข๐ฑ๐ต๐ถ๐ณ๐ช๐ฏ๐จ ๐ญ๐ฐ๐ฏ๐จ-๐ณ๐ข๐ฏ๐จ๐ฆ ๐ฅ๐ฆ๐ฑ๐ฆ๐ฏ๐ฅ๐ฆ๐ฏ๐ค๐ช๐ฆ๐ด ๐ญ๐ช๐ฌ๐ฆ ๐ฏ๐ฆ๐ท๐ฆ๐ณ ๐ฃ๐ฆ๐ง๐ฐ๐ณ๐ฆ!โฃโฃ
โฃโฃ
โ ๐๐ฆ๐ญ๐ง-๐๐ต๐ต๐ฆ๐ฏ๐ต๐ช๐ฐ๐ฏ โ ๐๐ฉ๐ฆ ๐ฎ๐ข๐จ๐ช๐ค ๐ฃ๐ฆ๐ฉ๐ช๐ฏ๐ฅ ๐ช๐ตโฃโฃ
๐๐ท๐ฆ๐ณ๐บ ๐ธ๐ฐ๐ณ๐ฅ ๐ถ๐ฏ๐ฅ๐ฆ๐ณ๐ด๐ต๐ข๐ฏ๐ฅ๐ด ๐ช๐ต๐ด ๐ค๐ฐ๐ฏ๐ต๐ฆ๐น๐ต ๐ช๐ฏ ๐ณ๐ฆ๐ญ๐ข๐ต๐ช๐ฐ๐ฏ ๐ต๐ฐ ๐ฐ๐ต๐ฉ๐ฆ๐ณ๐ดโ๐ฎ๐ข๐ฌ๐ช๐ฏ๐จ ๐ฆ๐ฎ๐ฃ๐ฆ๐ฅ๐ฅ๐ช๐ฏ๐จ๐ด ๐ด๐ฎ๐ข๐ณ๐ต๐ฆ๐ณ ๐ข๐ฏ๐ฅ ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ๐ด ๐ฎ๐ฐ๐ณ๐ฆ ๐ค๐ฐ๐ฏ๐ต๐ฆ๐น๐ต-๐ข๐ธ๐ข๐ณ๐ฆ.โฃโฃ
โฃโฃ
โ ๐๐ถ๐ญ๐ต๐ช-๐๐ฆ๐ข๐ฅ ๐๐ต๐ต๐ฆ๐ฏ๐ต๐ช๐ฐ๐ฏ โ ๐๐ฆ๐ฆ๐ช๐ฏ๐จ ๐ง๐ณ๐ฐ๐ฎ ๐ฎ๐ถ๐ญ๐ต๐ช๐ฑ๐ญ๐ฆ ๐ข๐ฏ๐จ๐ญ๐ฆ๐ดโฃโฃ
๐๐ช๐ง๐ง๐ฆ๐ณ๐ฆ๐ฏ๐ต ๐ข๐ต๐ต๐ฆ๐ฏ๐ต๐ช๐ฐ๐ฏ ๐ฉ๐ฆ๐ข๐ฅ๐ด ๐ง๐ฐ๐ค๐ถ๐ด ๐ฐ๐ฏ ๐ฅ๐ช๐ง๐ง๐ฆ๐ณ๐ฆ๐ฏ๐ต ๐ณ๐ฆ๐ญ๐ข๐ต๐ช๐ฐ๐ฏ๐ด๐ฉ๐ช๐ฑ๐ด ๐ช๐ฏ ๐ต๐ฉ๐ฆ ๐ฅ๐ข๐ต๐ข. ๐๐ตโ๐ด ๐ญ๐ช๐ฌ๐ฆ ๐ฉ๐ข๐ท๐ช๐ฏ๐จ ๐ฎ๐ถ๐ญ๐ต๐ช๐ฑ๐ญ๐ฆ ๐ฆ๐น๐ฑ๐ฆ๐ณ๐ต๐ด ๐ข๐ฏ๐ข๐ญ๐บ๐ป๐ฆ ๐ต๐ฉ๐ฆ ๐ด๐ข๐ฎ๐ฆ ๐ช๐ฏ๐ง๐ฐ๐ณ๐ฎ๐ข๐ต๐ช๐ฐ๐ฏ!โฃโฃ
โฃโฃ
โ ๐๐ฐ๐ด๐ช๐ต๐ช๐ฐ๐ฏ๐ข๐ญ ๐๐ฏ๐ค๐ฐ๐ฅ๐ช๐ฏ๐จ โ ๐๐ฆ๐ข๐ค๐ฉ๐ช๐ฏ๐จ ๐ต๐ฉ๐ฆ ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ ๐ฐ๐ณ๐ฅ๐ฆ๐ณ ๐ฎ๐ข๐ต๐ต๐ฆ๐ณ๐ดโฃโฃ
๐๐ช๐ฏ๐ค๐ฆ ๐๐ณ๐ข๐ฏ๐ด๐ง๐ฐ๐ณ๐ฎ๐ฆ๐ณ๐ด ๐ฅ๐ฐ๐ฏโ๐ต ๐ฑ๐ณ๐ฐ๐ค๐ฆ๐ด๐ด ๐ฅ๐ข๐ต๐ข ๐ด๐ฆ๐ฒ๐ถ๐ฆ๐ฏ๐ต๐ช๐ข๐ญ๐ญ๐บ, ๐ต๐ฉ๐ช๐ด ๐ต๐ณ๐ช๐ค๐ฌ ๐ฆ๐ฏ๐ด๐ถ๐ณ๐ฆ๐ด ๐ต๐ฉ๐ฆ๐บ โ๐ฌ๐ฏ๐ฐ๐ธโ ๐ต๐ฉ๐ฆ ๐ฑ๐ฐ๐ด๐ช๐ต๐ช๐ฐ๐ฏ ๐ฐ๐ง ๐ฆ๐ข๐ค๐ฉ ๐ต๐ฐ๐ฌ๐ฆ๐ฏ.โฃโฃ
โฃโฃ
โ ๐๐ข๐บ๐ฆ๐ณ ๐๐ฐ๐ณ๐ฎ๐ข๐ญ๐ช๐ป๐ข๐ต๐ช๐ฐ๐ฏ โ ๐๐ต๐ข๐ฃ๐ช๐ญ๐ช๐ป๐ช๐ฏ๐จ ๐ต๐ฉ๐ฆ ๐ญ๐ฆ๐ข๐ณ๐ฏ๐ช๐ฏ๐จ ๐ฑ๐ณ๐ฐ๐ค๐ฆ๐ด๐ดโฃโฃ
๐๐ต ๐ด๐ฑ๐ฆ๐ฆ๐ฅ๐ด ๐ถ๐ฑ ๐ต๐ณ๐ข๐ช๐ฏ๐ช๐ฏ๐จ ๐ข๐ฏ๐ฅ ๐ข๐ท๐ฐ๐ช๐ฅ๐ด ๐ท๐ข๐ฏ๐ช๐ด๐ฉ๐ช๐ฏ๐จ ๐จ๐ณ๐ข๐ฅ๐ช๐ฆ๐ฏ๐ต๐ด, ๐ญ๐ฆ๐ต๐ต๐ช๐ฏ๐จ ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ๐ด ๐จ๐ฐ ๐ฅ๐ฆ๐ฆ๐ฑ๐ฆ๐ณ ๐ข๐ฏ๐ฅ ๐ญ๐ฆ๐ข๐ณ๐ฏ ๐ฃ๐ฆ๐ต๐ต๐ฆ๐ณ.โฃโฃ
๐ @codeprogrammer
Like and Share๐
โฃโฃ
โ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ข ๐๐ณ๐ข๐ฏ๐ด๐ง๐ฐ๐ณ๐ฎ๐ฆ๐ณ ๐ข๐ฏ๐ฅ ๐ธ๐ฉ๐บ ๐ธ๐ข๐ด ๐ช๐ต ๐ช๐ฏ๐ต๐ณ๐ฐ๐ฅ๐ถ๐ค๐ฆ๐ฅ?โฃโฃ
๐๐ต ๐ด๐ฐ๐ญ๐ท๐ฆ๐ฅ ๐ต๐ฉ๐ฆ ๐ญ๐ช๐ฎ๐ช๐ต๐ข๐ต๐ช๐ฐ๐ฏ๐ด ๐ฐ๐ง ๐๐๐๐ด & ๐๐๐๐๐ด ๐ฃ๐บ ๐ถ๐ด๐ช๐ฏ๐จ ๐ด๐ฆ๐ญ๐ง-๐ข๐ต๐ต๐ฆ๐ฏ๐ต๐ช๐ฐ๐ฏ, ๐ฆ๐ฏ๐ข๐ฃ๐ญ๐ช๐ฏ๐จ ๐ฑ๐ข๐ณ๐ข๐ญ๐ญ๐ฆ๐ญ ๐ฑ๐ณ๐ฐ๐ค๐ฆ๐ด๐ด๐ช๐ฏ๐จ ๐ข๐ฏ๐ฅ ๐ค๐ข๐ฑ๐ต๐ถ๐ณ๐ช๐ฏ๐จ ๐ญ๐ฐ๐ฏ๐จ-๐ณ๐ข๐ฏ๐จ๐ฆ ๐ฅ๐ฆ๐ฑ๐ฆ๐ฏ๐ฅ๐ฆ๐ฏ๐ค๐ช๐ฆ๐ด ๐ญ๐ช๐ฌ๐ฆ ๐ฏ๐ฆ๐ท๐ฆ๐ณ ๐ฃ๐ฆ๐ง๐ฐ๐ณ๐ฆ!โฃโฃ
โฃโฃ
โ ๐๐ฆ๐ญ๐ง-๐๐ต๐ต๐ฆ๐ฏ๐ต๐ช๐ฐ๐ฏ โ ๐๐ฉ๐ฆ ๐ฎ๐ข๐จ๐ช๐ค ๐ฃ๐ฆ๐ฉ๐ช๐ฏ๐ฅ ๐ช๐ตโฃโฃ
๐๐ท๐ฆ๐ณ๐บ ๐ธ๐ฐ๐ณ๐ฅ ๐ถ๐ฏ๐ฅ๐ฆ๐ณ๐ด๐ต๐ข๐ฏ๐ฅ๐ด ๐ช๐ต๐ด ๐ค๐ฐ๐ฏ๐ต๐ฆ๐น๐ต ๐ช๐ฏ ๐ณ๐ฆ๐ญ๐ข๐ต๐ช๐ฐ๐ฏ ๐ต๐ฐ ๐ฐ๐ต๐ฉ๐ฆ๐ณ๐ดโ๐ฎ๐ข๐ฌ๐ช๐ฏ๐จ ๐ฆ๐ฎ๐ฃ๐ฆ๐ฅ๐ฅ๐ช๐ฏ๐จ๐ด ๐ด๐ฎ๐ข๐ณ๐ต๐ฆ๐ณ ๐ข๐ฏ๐ฅ ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ๐ด ๐ฎ๐ฐ๐ณ๐ฆ ๐ค๐ฐ๐ฏ๐ต๐ฆ๐น๐ต-๐ข๐ธ๐ข๐ณ๐ฆ.โฃโฃ
โฃโฃ
โ ๐๐ถ๐ญ๐ต๐ช-๐๐ฆ๐ข๐ฅ ๐๐ต๐ต๐ฆ๐ฏ๐ต๐ช๐ฐ๐ฏ โ ๐๐ฆ๐ฆ๐ช๐ฏ๐จ ๐ง๐ณ๐ฐ๐ฎ ๐ฎ๐ถ๐ญ๐ต๐ช๐ฑ๐ญ๐ฆ ๐ข๐ฏ๐จ๐ญ๐ฆ๐ดโฃโฃ
๐๐ช๐ง๐ง๐ฆ๐ณ๐ฆ๐ฏ๐ต ๐ข๐ต๐ต๐ฆ๐ฏ๐ต๐ช๐ฐ๐ฏ ๐ฉ๐ฆ๐ข๐ฅ๐ด ๐ง๐ฐ๐ค๐ถ๐ด ๐ฐ๐ฏ ๐ฅ๐ช๐ง๐ง๐ฆ๐ณ๐ฆ๐ฏ๐ต ๐ณ๐ฆ๐ญ๐ข๐ต๐ช๐ฐ๐ฏ๐ด๐ฉ๐ช๐ฑ๐ด ๐ช๐ฏ ๐ต๐ฉ๐ฆ ๐ฅ๐ข๐ต๐ข. ๐๐ตโ๐ด ๐ญ๐ช๐ฌ๐ฆ ๐ฉ๐ข๐ท๐ช๐ฏ๐จ ๐ฎ๐ถ๐ญ๐ต๐ช๐ฑ๐ญ๐ฆ ๐ฆ๐น๐ฑ๐ฆ๐ณ๐ต๐ด ๐ข๐ฏ๐ข๐ญ๐บ๐ป๐ฆ ๐ต๐ฉ๐ฆ ๐ด๐ข๐ฎ๐ฆ ๐ช๐ฏ๐ง๐ฐ๐ณ๐ฎ๐ข๐ต๐ช๐ฐ๐ฏ!โฃโฃ
โฃโฃ
โ ๐๐ฐ๐ด๐ช๐ต๐ช๐ฐ๐ฏ๐ข๐ญ ๐๐ฏ๐ค๐ฐ๐ฅ๐ช๐ฏ๐จ โ ๐๐ฆ๐ข๐ค๐ฉ๐ช๐ฏ๐จ ๐ต๐ฉ๐ฆ ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ ๐ฐ๐ณ๐ฅ๐ฆ๐ณ ๐ฎ๐ข๐ต๐ต๐ฆ๐ณ๐ดโฃโฃ
๐๐ช๐ฏ๐ค๐ฆ ๐๐ณ๐ข๐ฏ๐ด๐ง๐ฐ๐ณ๐ฎ๐ฆ๐ณ๐ด ๐ฅ๐ฐ๐ฏโ๐ต ๐ฑ๐ณ๐ฐ๐ค๐ฆ๐ด๐ด ๐ฅ๐ข๐ต๐ข ๐ด๐ฆ๐ฒ๐ถ๐ฆ๐ฏ๐ต๐ช๐ข๐ญ๐ญ๐บ, ๐ต๐ฉ๐ช๐ด ๐ต๐ณ๐ช๐ค๐ฌ ๐ฆ๐ฏ๐ด๐ถ๐ณ๐ฆ๐ด ๐ต๐ฉ๐ฆ๐บ โ๐ฌ๐ฏ๐ฐ๐ธโ ๐ต๐ฉ๐ฆ ๐ฑ๐ฐ๐ด๐ช๐ต๐ช๐ฐ๐ฏ ๐ฐ๐ง ๐ฆ๐ข๐ค๐ฉ ๐ต๐ฐ๐ฌ๐ฆ๐ฏ.โฃโฃ
โฃโฃ
โ ๐๐ข๐บ๐ฆ๐ณ ๐๐ฐ๐ณ๐ฎ๐ข๐ญ๐ช๐ป๐ข๐ต๐ช๐ฐ๐ฏ โ ๐๐ต๐ข๐ฃ๐ช๐ญ๐ช๐ป๐ช๐ฏ๐จ ๐ต๐ฉ๐ฆ ๐ญ๐ฆ๐ข๐ณ๐ฏ๐ช๐ฏ๐จ ๐ฑ๐ณ๐ฐ๐ค๐ฆ๐ด๐ดโฃโฃ
๐๐ต ๐ด๐ฑ๐ฆ๐ฆ๐ฅ๐ด ๐ถ๐ฑ ๐ต๐ณ๐ข๐ช๐ฏ๐ช๐ฏ๐จ ๐ข๐ฏ๐ฅ ๐ข๐ท๐ฐ๐ช๐ฅ๐ด ๐ท๐ข๐ฏ๐ช๐ด๐ฉ๐ช๐ฏ๐จ ๐จ๐ณ๐ข๐ฅ๐ช๐ฆ๐ฏ๐ต๐ด, ๐ญ๐ฆ๐ต๐ต๐ช๐ฏ๐จ ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ๐ด ๐จ๐ฐ ๐ฅ๐ฆ๐ฆ๐ฑ๐ฆ๐ณ ๐ข๐ฏ๐ฅ ๐ญ๐ฆ๐ข๐ณ๐ฏ ๐ฃ๐ฆ๐ต๐ต๐ฆ๐ณ.โฃโฃ
Like and Share
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2