π€π§ Mastering Large Language Models: Top #1 Complete Guide to Maxime Labonneβs LLM Course
ποΈ 22 Oct 2025
π AI News & Trends
In the rapidly evolving landscape of artificial intelligence, large language models (LLMs) have become the foundation of modern AI innovation powering tools like ChatGPT, Claude, Gemini and countless enterprise AI applications. However, building, fine-tuning and deploying these models require deep technical understanding and hands-on expertise. To bridge this knowledge gap, Maxime Labonne, a leading AI ...
#LLM #ArtificialIntelligence #MachineLearning #DeepLearning #AIEngineering #LargeLanguageModels
ποΈ 22 Oct 2025
π AI News & Trends
In the rapidly evolving landscape of artificial intelligence, large language models (LLMs) have become the foundation of modern AI innovation powering tools like ChatGPT, Claude, Gemini and countless enterprise AI applications. However, building, fine-tuning and deploying these models require deep technical understanding and hands-on expertise. To bridge this knowledge gap, Maxime Labonne, a leading AI ...
#LLM #ArtificialIntelligence #MachineLearning #DeepLearning #AIEngineering #LargeLanguageModels
π€π§ Mastering Large Language Models: Top #1 Complete Guide to Maxime Labonneβs LLM Course
ποΈ 22 Oct 2025
π AI News & Trends
In the rapidly evolving landscape of artificial intelligence, large language models (LLMs) have become the foundation of modern AI innovation powering tools like ChatGPT, Claude, Gemini and countless enterprise AI applications. However, building, fine-tuning and deploying these models require deep technical understanding and hands-on expertise. To bridge this knowledge gap, Maxime Labonne, a leading AI ...
#LLM #ArtificialIntelligence #MachineLearning #DeepLearning #AIEngineering #LargeLanguageModels
ποΈ 22 Oct 2025
π AI News & Trends
In the rapidly evolving landscape of artificial intelligence, large language models (LLMs) have become the foundation of modern AI innovation powering tools like ChatGPT, Claude, Gemini and countless enterprise AI applications. However, building, fine-tuning and deploying these models require deep technical understanding and hands-on expertise. To bridge this knowledge gap, Maxime Labonne, a leading AI ...
#LLM #ArtificialIntelligence #MachineLearning #DeepLearning #AIEngineering #LargeLanguageModels
π€π§ The Ultimate #1 Collection of AI Books In Awesome-AI-Books Repository
ποΈ 22 Oct 2025
π AI News & Trends
Artificial Intelligence (AI) has emerged as one of the most transformative technologies of the 21st century. From powering self-driving cars to enabling advanced conversational AI like ChatGPT, AI is redefining how humans interact with machines. However, mastering AI requires a strong foundation in theory, mathematics, programming and hands-on experimentation. For enthusiasts, students and professionals seeking ...
#ArtificialIntelligence #AIBooks #MachineLearning #DeepLearning #AIResources #TechBooks
ποΈ 22 Oct 2025
π AI News & Trends
Artificial Intelligence (AI) has emerged as one of the most transformative technologies of the 21st century. From powering self-driving cars to enabling advanced conversational AI like ChatGPT, AI is redefining how humans interact with machines. However, mastering AI requires a strong foundation in theory, mathematics, programming and hands-on experimentation. For enthusiasts, students and professionals seeking ...
#ArtificialIntelligence #AIBooks #MachineLearning #DeepLearning #AIResources #TechBooks
# Real-World Case Study: E-commerce Product Pipeline
import boto3
from PIL import Image
import io
def process_product_image(s3_bucket, s3_key):
# 1. Download from S3
s3 = boto3.client('s3')
response = s3.get_object(Bucket=s3_bucket, Key=s3_key)
img = Image.open(io.BytesIO(response['Body'].read()))
# 2. Standardize dimensions
img = img.convert("RGB")
img = img.resize((1200, 1200), Image.LANCZOS)
# 3. Remove background (simplified)
# In practice: use rembg or AWS Rekognition
img = remove_background(img)
# 4. Generate variants
variants = {
"web": img.resize((800, 800)),
"mobile": img.resize((400, 400)),
"thumbnail": img.resize((100, 100))
}
# 5. Upload to CDN
for name, variant in variants.items():
buffer = io.BytesIO()
variant.save(buffer, "JPEG", quality=95)
s3.upload_fileobj(
buffer,
"cdn-bucket",
f"products/{s3_key.split('/')[-1].split('.')[0]}_{name}.jpg",
ExtraArgs={'ContentType': 'image/jpeg', 'CacheControl': 'max-age=31536000'}
)
# 6. Generate WebP version
webp_buffer = io.BytesIO()
img.save(webp_buffer, "WEBP", quality=85)
s3.upload_fileobj(webp_buffer, "cdn-bucket", f"products/{s3_key.split('/')[-1].split('.')[0]}.webp")
process_product_image("user-uploads", "products/summer_dress.jpg")
By: @DataScienceM π
#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
β€1
In Python, building AI-powered Telegram bots unlocks massive potential for image generation, processing, and automationβmaster this to create viral tools and ace full-stack interviews! π€
Learn more: https://hackmd.io/@husseinsheikho/building-AI-powered-Telegram-bots
https://t.iss.one/DataScienceMπ¦Ύ
# Basic Bot Setup - The foundation (PTB v20+ Async)
from telegram.ext import Application, CommandHandler, MessageHandler, filters
async def start(update, context):
await update.message.reply_text(
"β¨ AI Image Bot Active!\n"
"/generate - Create images from text\n"
"/enhance - Improve photo quality\n"
"/help - Full command list"
)
app = Application.builder().token("YOUR_BOT_TOKEN").build()
app.add_handler(CommandHandler("start", start))
app.run_polling()
# Image Generation - DALL-E Integration (OpenAI)
import openai
from telegram.ext import ContextTypes
openai.api_key = os.getenv("OPENAI_API_KEY")
async def generate(update: Update, context: ContextTypes.DEFAULT_TYPE):
if not context.args:
await update.message.reply_text("β Usage: /generate cute robot astronaut")
return
prompt = " ".join(context.args)
try:
response = openai.Image.create(
prompt=prompt,
n=1,
size="1024x1024"
)
await update.message.reply_photo(
photo=response['data'][0]['url'],
caption=f"π¨ Generated: *{prompt}*",
parse_mode="Markdown"
)
except Exception as e:
await update.message.reply_text(f"π₯ Error: {str(e)}")
app.add_handler(CommandHandler("generate", generate))
Learn more: https://hackmd.io/@husseinsheikho/building-AI-powered-Telegram-bots
#Python #TelegramBot #AI #ImageGeneration #StableDiffusion #OpenAI #MachineLearning #CodingInterview #FullStack #Chatbots #DeepLearning #ComputerVision #Programming #TechJobs #DeveloperTips #CareerGrowth #CloudComputing #Docker #APIs #Python3 #Productivity #TechTips
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
β€1
π€π§ AI Projects : A Comprehensive Showcase of Machine Learning, Deep Learning and Generative AI
ποΈ 27 Oct 2025
π AI News & Trends
Artificial Intelligence (AI) is transforming industries across the globe, driving innovation through automation, data-driven insights and intelligent decision-making. Whether itβs predicting house prices, detecting diseases or building conversational chatbots, AI is at the core of modern digital solutions. The AI Project Gallery by Hema Kalyan Murapaka is an exceptional GitHub repository that curates a wide ...
#AI #MachineLearning #DeepLearning #GenerativeAI #ArtificialIntelligence #GitHub
ποΈ 27 Oct 2025
π AI News & Trends
Artificial Intelligence (AI) is transforming industries across the globe, driving innovation through automation, data-driven insights and intelligent decision-making. Whether itβs predicting house prices, detecting diseases or building conversational chatbots, AI is at the core of modern digital solutions. The AI Project Gallery by Hema Kalyan Murapaka is an exceptional GitHub repository that curates a wide ...
#AI #MachineLearning #DeepLearning #GenerativeAI #ArtificialIntelligence #GitHub
π‘ Building a Simple Convolutional Neural Network (CNN)
Constructing a basic Convolutional Neural Network (CNN) is a fundamental step in deep learning for image processing. Using TensorFlow's Keras API, we can define a network with convolutional, pooling, and dense layers to classify images. This example sets up a simple CNN to recognize handwritten digits from the MNIST dataset.
Code explanation: This script defines a simple CNN using Keras. It loads and normalizes MNIST images. The
#Python #DeepLearning #CNN #Keras #TensorFlow
βββββββββββββββ
By: @DataScienceM β¨
Constructing a basic Convolutional Neural Network (CNN) is a fundamental step in deep learning for image processing. Using TensorFlow's Keras API, we can define a network with convolutional, pooling, and dense layers to classify images. This example sets up a simple CNN to recognize handwritten digits from the MNIST dataset.
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
import numpy as np
# 1. Load and preprocess the MNIST dataset
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# Reshape images for CNN: (batch_size, height, width, channels)
# MNIST images are 28x28 grayscale, so channels = 1
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255
# 2. Define the CNN architecture
model = models.Sequential()
# First Convolutional Block
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
# Second Convolutional Block
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# Flatten the 3D output to 1D for the Dense layers
model.add(layers.Flatten())
# Dense (fully connected) layers
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax')) # Output layer for 10 classes (digits 0-9)
# 3. Compile the model
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# Print a summary of the model layers
model.summary()
# 4. Train the model (uncomment to run training)
# print("\nTraining the model...")
# model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_split=0.1)
# 5. Evaluate the model (uncomment to run evaluation)
# print("\nEvaluating the model...")
# test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
# print(f"Test accuracy: {test_acc:.4f}")
Code explanation: This script defines a simple CNN using Keras. It loads and normalizes MNIST images. The
Sequential model adds Conv2D layers for feature extraction, MaxPooling2D for downsampling, a Flatten layer to transition to 1D, and Dense layers for classification. The model is then compiled with an optimizer, loss function, and metrics, and a summary of its architecture is printed. Training and evaluation steps are included as commented-out examples.#Python #DeepLearning #CNN #Keras #TensorFlow
βββββββββββββββ
By: @DataScienceM β¨
#CNN #DeepLearning #Python #Tutorial
Lesson: Building a Convolutional Neural Network (CNN) for Image Classification
This lesson will guide you through building a CNN from scratch using TensorFlow and Keras to classify images from the CIFAR-10 dataset.
---
Part 1: Setup and Data Loading
First, we import the necessary libraries and load the CIFAR-10 dataset. This dataset contains 60,000 32x32 color images in 10 classes.
#TensorFlow #Keras #DataLoading
---
Part 2: Data Exploration and Preprocessing
We need to prepare the data before feeding it to the network. This involves:
β’ Normalization: Scaling pixel values from the 0-255 range to the 0-1 range.
β’ One-Hot Encoding: Converting class vectors (integers) to a binary matrix.
Let's also visualize some images to understand our data.
#DataPreprocessing #Normalization #Visualization
---
Part 3: Building the CNN Model
Now, we'll construct our CNN model. A common architecture consists of a stack of
β’ Conv2D: Extracts features (like edges, corners) from the input image.
β’ MaxPooling2D: Reduces the spatial dimensions (downsampling), which helps in making the feature detection more robust.
β’ Flatten: Converts the 2D feature maps into a 1D vector.
β’ Dense: A standard fully-connected neural network layer.
#ModelBuilding #CNN #KerasLayers
---
Part 4: Compiling the Model
Before training, we need to configure the learning process. This is done via the
β’ Optimizer: An algorithm to update the model's weights (e.g., 'adam').
β’ Loss Function: A function to measure how inaccurate the model is during training (e.g., 'categorical_crossentropy' for multi-class classification).
β’ Metrics: Used to monitor the training and testing steps (e.g., 'accuracy').
#ModelCompilation #Optimizer #LossFunction
---
Lesson: Building a Convolutional Neural Network (CNN) for Image Classification
This lesson will guide you through building a CNN from scratch using TensorFlow and Keras to classify images from the CIFAR-10 dataset.
---
Part 1: Setup and Data Loading
First, we import the necessary libraries and load the CIFAR-10 dataset. This dataset contains 60,000 32x32 color images in 10 classes.
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
import numpy as np
# Load the CIFAR-10 dataset
(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()
# Check the shape of the data
print("Training data shape:", x_train.shape)
print("Test data shape:", x_test.shape)
#TensorFlow #Keras #DataLoading
---
Part 2: Data Exploration and Preprocessing
We need to prepare the data before feeding it to the network. This involves:
β’ Normalization: Scaling pixel values from the 0-255 range to the 0-1 range.
β’ One-Hot Encoding: Converting class vectors (integers) to a binary matrix.
Let's also visualize some images to understand our data.
# Define class names for CIFAR-10
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
# Visualize a few images
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(x_train[i])
plt.xlabel(class_names[y_train[i][0]])
plt.show()
# Normalize pixel values to be between 0 and 1
x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0
# One-hot encode the labels
y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)
y_test = tf.keras.utils.to_categorical(y_test, num_classes=10)
#DataPreprocessing #Normalization #Visualization
---
Part 3: Building the CNN Model
Now, we'll construct our CNN model. A common architecture consists of a stack of
Conv2D and MaxPooling2D layers, followed by Dense layers for classification.β’ Conv2D: Extracts features (like edges, corners) from the input image.
β’ MaxPooling2D: Reduces the spatial dimensions (downsampling), which helps in making the feature detection more robust.
β’ Flatten: Converts the 2D feature maps into a 1D vector.
β’ Dense: A standard fully-connected neural network layer.
model = models.Sequential()
# Convolutional Base
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
# Flatten and Dense Layers
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax')) # 10 output classes
# Print the model summary
model.summary()
#ModelBuilding #CNN #KerasLayers
---
Part 4: Compiling the Model
Before training, we need to configure the learning process. This is done via the
compile() method, which requires:β’ Optimizer: An algorithm to update the model's weights (e.g., 'adam').
β’ Loss Function: A function to measure how inaccurate the model is during training (e.g., 'categorical_crossentropy' for multi-class classification).
β’ Metrics: Used to monitor the training and testing steps (e.g., 'accuracy').
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
#ModelCompilation #Optimizer #LossFunction
---
π€π§ Pico-Banana-400K: The Breakthrough Dataset Advancing Text-Guided Image Editing
ποΈ 09 Nov 2025
π AI News & Trends
Text-guided image editing has rapidly evolved with powerful multimodal models capable of transforming images using simple natural-language instructions. These models can change object colors, modify lighting, add accessories, adjust backgrounds or even convert real photographs into artistic styles. However, the progress of research has been limited by one crucial bottleneck: the lack of large-scale, high-quality, ...
#TextGuidedEditing #MultimodalAI #ImageEditing #AIResearch #ComputerVision #DeepLearning
ποΈ 09 Nov 2025
π AI News & Trends
Text-guided image editing has rapidly evolved with powerful multimodal models capable of transforming images using simple natural-language instructions. These models can change object colors, modify lighting, add accessories, adjust backgrounds or even convert real photographs into artistic styles. However, the progress of research has been limited by one crucial bottleneck: the lack of large-scale, high-quality, ...
#TextGuidedEditing #MultimodalAI #ImageEditing #AIResearch #ComputerVision #DeepLearning
β€1
π€π§ Concerto: How Joint 2D-3D Self-Supervised Learning Is Redefining Spatial Intelligence
ποΈ 09 Nov 2025
π AI News & Trends
The world of artificial intelligence is rapidly evolving and self-supervised learning has become a driving force behind breakthroughs in computer vision and 3D scene understanding. Traditional supervised learning relies heavily on labeled datasets which are expensive and time-consuming to produce. Self-supervised learning, on the other hand, extracts meaningful patterns without manual labels allowing models to ...
#SelfSupervisedLearning #ComputerVision #3DSceneUnderstanding #SpatialIntelligence #AIResearch #DeepLearning
ποΈ 09 Nov 2025
π AI News & Trends
The world of artificial intelligence is rapidly evolving and self-supervised learning has become a driving force behind breakthroughs in computer vision and 3D scene understanding. Traditional supervised learning relies heavily on labeled datasets which are expensive and time-consuming to produce. Self-supervised learning, on the other hand, extracts meaningful patterns without manual labels allowing models to ...
#SelfSupervisedLearning #ComputerVision #3DSceneUnderstanding #SpatialIntelligence #AIResearch #DeepLearning
π€π§ The Transformer Architecture: How Attention Revolutionized Deep Learning
ποΈ 11 Nov 2025
π AI News & Trends
The field of artificial intelligence has witnessed a remarkable evolution and at the heart of this transformation lies the Transformer architecture. Introduced by Vaswani et al. in 2017, the paper βAttention Is All You Needβ redefined the foundations of natural language processing (NLP) and sequence modeling. Unlike its predecessors β recurrent and convolutional neural networks, ...
#TransformerArchitecture #AttentionMechanism #DeepLearning #NaturalLanguageProcessing #NLP #AIResearch
ποΈ 11 Nov 2025
π AI News & Trends
The field of artificial intelligence has witnessed a remarkable evolution and at the heart of this transformation lies the Transformer architecture. Introduced by Vaswani et al. in 2017, the paper βAttention Is All You Needβ redefined the foundations of natural language processing (NLP) and sequence modeling. Unlike its predecessors β recurrent and convolutional neural networks, ...
#TransformerArchitecture #AttentionMechanism #DeepLearning #NaturalLanguageProcessing #NLP #AIResearch
π€π§ The Transformer Architecture: How Attention Revolutionized Deep Learning
ποΈ 11 Nov 2025
π AI News & Trends
The field of artificial intelligence has witnessed a remarkable evolution and at the heart of this transformation lies the Transformer architecture. Introduced by Vaswani et al. in 2017, the paper βAttention Is All You Needβ redefined the foundations of natural language processing (NLP) and sequence modeling. Unlike its predecessors β recurrent and convolutional neural networks, ...
#TransformerArchitecture #AttentionMechanism #DeepLearning #NaturalLanguageProcessing #NLP #AIResearch
ποΈ 11 Nov 2025
π AI News & Trends
The field of artificial intelligence has witnessed a remarkable evolution and at the heart of this transformation lies the Transformer architecture. Introduced by Vaswani et al. in 2017, the paper βAttention Is All You Needβ redefined the foundations of natural language processing (NLP) and sequence modeling. Unlike its predecessors β recurrent and convolutional neural networks, ...
#TransformerArchitecture #AttentionMechanism #DeepLearning #NaturalLanguageProcessing #NLP #AIResearch
π€π§ BERT: Revolutionizing Natural Language Processing with Bidirectional Transformers
ποΈ 11 Nov 2025
π AI News & Trends
In the ever-evolving landscape of artificial intelligence and natural language processing (NLP), BERT (Bidirectional Encoder Representations from Transformers) stands as a monumental breakthrough. Developed by researchers at Google AI in 2018, BERT introduced a new way of understanding the context of language by using deep bidirectional training of the Transformer architecture. Unlike previous models that ...
#BERT #NaturalLanguageProcessing #TransformerArchitecture #BidirectionalLearning #DeepLearning #AIStrategy
ποΈ 11 Nov 2025
π AI News & Trends
In the ever-evolving landscape of artificial intelligence and natural language processing (NLP), BERT (Bidirectional Encoder Representations from Transformers) stands as a monumental breakthrough. Developed by researchers at Google AI in 2018, BERT introduced a new way of understanding the context of language by using deep bidirectional training of the Transformer architecture. Unlike previous models that ...
#BERT #NaturalLanguageProcessing #TransformerArchitecture #BidirectionalLearning #DeepLearning #AIStrategy
β€1
π The Three Ages of Data Science: When to Use Traditional Machine Learning, Deep Learning, or an LLM (Explained with One Example)
π Category: DATA SCIENCE
π Date: 2025-11-11 | β±οΈ Read time: 10 min read
This article charts the evolution of the data scientist's role through three distinct eras: traditional machine learning, deep learning, and the current age of large language models (LLMs). Using a single, practical use case, it illustrates how the approach to problem-solving has shifted with each technological generation. The piece serves as a guide for practitioners, clarifying when to leverage classic algorithms, complex neural networks, or the latest foundation models, helping them select the most appropriate tool for the task at hand.
#DataScience #MachineLearning #DeepLearning #LLM
π Category: DATA SCIENCE
π Date: 2025-11-11 | β±οΈ Read time: 10 min read
This article charts the evolution of the data scientist's role through three distinct eras: traditional machine learning, deep learning, and the current age of large language models (LLMs). Using a single, practical use case, it illustrates how the approach to problem-solving has shifted with each technological generation. The piece serves as a guide for practitioners, clarifying when to leverage classic algorithms, complex neural networks, or the latest foundation models, helping them select the most appropriate tool for the task at hand.
#DataScience #MachineLearning #DeepLearning #LLM
π I Measured Neural Network Training Every 5 Steps for 10,000 Iterations
π Category: MACHINE LEARNING
π Date: 2025-11-15 | β±οΈ Read time: 9 min read
A deep dive into the mechanics of neural network training. This detailed analysis meticulously measures key training metrics every 5 steps over 10,000 iterations, providing a high-resolution view of the learning process. The findings offer granular insights into model convergence and the subtle dynamics often missed by standard monitoring, making it a valuable read for ML practitioners and researchers seeking to better understand how models learn.
#NeuralNetworks #MachineLearning #DeepLearning #DataAnalysis #ModelTraining
π Category: MACHINE LEARNING
π Date: 2025-11-15 | β±οΈ Read time: 9 min read
A deep dive into the mechanics of neural network training. This detailed analysis meticulously measures key training metrics every 5 steps over 10,000 iterations, providing a high-resolution view of the learning process. The findings offer granular insights into model convergence and the subtle dynamics often missed by standard monitoring, making it a valuable read for ML practitioners and researchers seeking to better understand how models learn.
#NeuralNetworks #MachineLearning #DeepLearning #DataAnalysis #ModelTraining
β€2
Forwarded from Python | Machine Learning | Coding | R
π€π§ The Transformer Architecture: How Attention Revolutionized Deep Learning
ποΈ 11 Nov 2025
π AI News & Trends
The field of artificial intelligence has witnessed a remarkable evolution and at the heart of this transformation lies the Transformer architecture. Introduced by Vaswani et al. in 2017, the paper βAttention Is All You Needβ redefined the foundations of natural language processing (NLP) and sequence modeling. Unlike its predecessors β recurrent and convolutional neural networks, ...
#TransformerArchitecture #AttentionMechanism #DeepLearning #NaturalLanguageProcessing #NLP #AIResearch
ποΈ 11 Nov 2025
π AI News & Trends
The field of artificial intelligence has witnessed a remarkable evolution and at the heart of this transformation lies the Transformer architecture. Introduced by Vaswani et al. in 2017, the paper βAttention Is All You Needβ redefined the foundations of natural language processing (NLP) and sequence modeling. Unlike its predecessors β recurrent and convolutional neural networks, ...
#TransformerArchitecture #AttentionMechanism #DeepLearning #NaturalLanguageProcessing #NLP #AIResearch
β€4