Machine Learning
39.2K subscribers
3.82K photos
32 videos
41 files
1.3K links
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
πŸ“Œ The Crucial Role of Color Theory in Data Analysis and Visualization

πŸ—‚ Category: DATA SCIENCE

πŸ•’ Date: 2025-09-11 | ⏱️ Read time: 6 min read

How research-backed color principles improved clarity and storytelling in my dashboards
❀1
πŸ“Œ Evaluating LLMs for Inference, or Lessons from Teaching for Machine Learning

πŸ—‚ Category: LARGE LANGUAGE MODELS

πŸ•’ Date: 2025-06-02 | ⏱️ Read time: 12 min read

It’s like grading papers, but your student is an LLM
❀1
πŸ“Œ Least Squares: Where Convenience Meets Optimality

πŸ—‚ Category: DATA SCIENCE

πŸ•’ Date: 2025-03-25 | ⏱️ Read time: 11 min read

Beyond being computationally easy, Least Squares is statically optimal and has a deep connection with…
🀩1
πŸ“Œ What Do Machine Learning Engineers Do?

πŸ—‚ Category: MACHINE LEARNING

πŸ•’ Date: 2025-03-25 | ⏱️ Read time: 8 min read

Breaking down my role as a machine learning engineer
❀2
πŸ“Œ From Fuzzy to Precise: How a Morphological Feature Extractor Enhances AI’s Recognition Capabilities

πŸ—‚ Category: ARTIFICIAL INTELLIGENCE

πŸ•’ Date: 2025-03-25 | ⏱️ Read time: 22 min read

Mimicking human visual perception to truly understand objects
❀1
πŸ“Œ Build Your Own AI Coding Assistant in JupyterLab with Ollama and Hugging Face

πŸ—‚ Category: ARTIFICIAL INTELLIGENCE

πŸ•’ Date: 2025-03-24 | ⏱️ Read time: 8 min read

A step-by-step guide to creating a local coding assistant without sending your data to the…
❀1
πŸ“Œ Evolving Product Operating Models in the Age of AI

πŸ—‚ Category: ARTIFICIAL INTELLIGENCE

πŸ•’ Date: 2025-03-21 | ⏱️ Read time: 14 min read

This article explores how the product operating model, and the core competencies of empowered product…
❀3
πŸ“Œ No More Tableau Downtime: Metadata API for Proactive Data Health

πŸ—‚ Category: DATA SCIENCE

πŸ•’ Date: 2025-03-21 | ⏱️ Read time: 14 min read

Leverage the power of the Metadata API to act on any potential data disruptions
πŸ“Œ What Germany Currently Is Up To, Debt-Wise

πŸ—‚ Category: DATA SCIENCE

πŸ•’ Date: 2025-03-21 | ⏱️ Read time: 6 min read

Billions, visualized to scale using python and HTML
πŸ“Œ Google’s Data Science Agent: Can It Really Do Your Job?

πŸ—‚ Category: ARTIFICIAL INTELLIGENCE

πŸ•’ Date: 2025-03-21 | ⏱️ Read time: 11 min read

I tested Google’s Data Science Agent in Colabβ€”here’s what it got right (and where it…
In Python, handling CSV files is straightforward using the built-in csv module for reading and writing tabular data, or pandas for advanced analysisβ€”essential for data processing tasks like importing/exporting datasets in interviews.

# Reading CSV with csv module (basic)
import csv
with open('data.csv', 'r') as file:
reader = csv.reader(file)
data = list(reader) # data = [['Name', 'Age'], ['Alice', '30'], ['Bob', '25']]

# Writing CSV with csv module
import csv
with open('output.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['Name', 'Age']) # Header
writer.writerows([['Alice', 30], ['Bob', 25]]) # Data rows

# Advanced: Reading with pandas (handles headers, missing values)
import pandas as pd
df = pd.read_csv('data.csv') # df = DataFrame with columns 'Name', 'Age'
print(df.head()) # Output: First 5 rows preview

# Writing with pandas
df.to_csv('output.csv', index=False) # Saves without row indices


#python #csv #pandas #datahandling #fileio #interviewtips

πŸ‘‰ @DataScience4
πŸ“Œ Data Visualization Explained (Part 4): A Review of Python Essentials

πŸ—‚ Category: DATA SCIENCE

πŸ•’ Date: 2025-10-25 | ⏱️ Read time: 8 min read

Learn the foundations of Python to take your data visualization game to the next level.
πŸ“Œ Building a Geospatial Lakehouse with Open Source and Databricks

πŸ—‚ Category: DATA ENGINEERING

πŸ•’ Date: 2025-10-25 | ⏱️ Read time: 10 min read

An example workflow for vector geospatial data science
❀3πŸ”₯1
πŸ“Œ Agentic AI from First Principles: Reflection

πŸ—‚ Category: AGENTIC AI

πŸ•’ Date: 2025-10-24 | ⏱️ Read time: 21 min read

From theory to code: building feedback loops that improve LLM accuracy
❀2
πŸ“Œ How to Consistently Extract Metadata from Complex Documents

πŸ—‚ Category: LLM APPLICATIONS

πŸ•’ Date: 2025-10-24 | ⏱️ Read time: 8 min read

Learn how to extract important pieces of information from your documents
πŸ“Œ Choosing the Best Model Size and Dataset Size under a Fixed Budget for LLMs

πŸ—‚ Category: LARGE LANGUAGE MODELS

πŸ•’ Date: 2025-10-24 | ⏱️ Read time: 5 min read

A small-scale exploration using Tiny Transformers
❀3
πŸ“Œ Deploy an OpenAI Agent Builder Chatbot to a Website

πŸ—‚ Category: AGENTIC AI

πŸ•’ Date: 2025-10-24 | ⏱️ Read time: 12 min read

Using OpenAI’s Agent Builder ChatKit
❀2
πŸ“Œ When Transformers Sing: Adapting SpectralKD for Text-Based Knowledge Distillation

πŸ—‚ Category: ARTIFICIAL INTELLIGENCE

πŸ•’ Date: 2025-10-23 | ⏱️ Read time: 8 min read

Exploring the frequency fingerprints of Transformers to guide smarter knowledge distillation
πŸ“Œ How to Keep AI Costs Under Control

πŸ—‚ Category: ARTIFICIAL INTELLIGENCE

πŸ•’ Date: 2025-10-23 | ⏱️ Read time: 4 min read

Lessons from Scaling LLMs
Sepp Hochreiter, who invented LSTM 30+ year ago, gave a keynote talk at Neurips 2024 and introduced xLSTM (Extended Long Short-Term Memory).

I designed this Excel exercise to help you understand how xLSTM works.

More: https://www.byhand.ai/p/xlstm
In Python, image processing unlocks powerful capabilities for computer vision, data augmentation, and automationβ€”master these techniques to excel in ML engineering interviews and real-world applications! πŸ–Ό

# PIL/Pillow Basics - The essential image library
from PIL import Image

# Open and display image
img = Image.open("input.jpg")
img.show()

# Convert formats
img.save("output.png")
img.convert("L").save("grayscale.jpg") # RGB to grayscale

# Basic transformations
img.rotate(90).save("rotated.jpg")
img.resize((300, 300)).save("resized.jpg")
img.transpose(Image.FLIP_LEFT_RIGHT).save("mirrored.jpg")


# Advanced Manipulation - Professional editing
from PIL import ImageEnhance, ImageFilter

# Adjust brightness/contrast
enhancer = ImageEnhance.Brightness(img)
bright_img = enhancer.enhance(1.5) # 50% brighter

# Apply filters
blurred = img.filter(ImageFilter.BLUR)
sharpened = img.filter(ImageFilter.SHARPEN)
edges = img.filter(ImageFilter.FIND_EDGES)

# Color manipulation
color_enhancer = ImageEnhance.Color(img)
color_enhancer.enhance(2.0).save("vibrant.jpg") # Double saturation


# OpenCV Integration - Computer vision powerhouse
import cv2
import numpy as np

# Read and convert color spaces
cv_img = cv2.imread("input.jpg")
rgb_img = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)
hsv_img = cv2.cvtColor(cv_img, cv2.COLOR_BGR2HSV)

# Edge detection (Canny algorithm)
edges = cv2.Canny(cv_img, 100, 200)
cv2.imwrite("edges.jpg", edges)

# Face detection (interview favorite)
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
faces = face_cascade.detectMultiScale(rgb_img, 1.3, 5)
for (x, y, w, h) in faces:
cv2.rectangle(cv_img, (x, y), (x+w, y+h), (255, 0, 0), 2)
cv2.imwrite("faces.jpg", cv_img)


# Batch Processing - Production automation
import os
from PIL import Image

def process_images(input_dir, output_dir):
os.makedirs(output_dir, exist_ok=True)
for filename in os.listdir(input_dir):
if filename.lower().endswith(('.png', '.jpg', '.jpeg')):
with Image.open(os.path.join(input_dir, filename)) as img:
# Resize while maintaining aspect ratio
img.thumbnail((800, 800))
# Apply watermark
watermark = Image.open("watermark.png")
img.paste(watermark, (img.width - watermark.width, img.height - watermark.height), watermark)
img.save(os.path.join(output_dir, filename))

process_images("raw_photos", "processed")


# Image Augmentation - Deep learning preparation
from torchvision import transforms

transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2),
transforms.RandomRotation(15),
transforms.Resize((224, 224)),
transforms.ToTensor()
])

# Apply to dataset
augmented_img = transform(img)


# EXIF Data Handling - Privacy/security critical
from PIL import Image

img = Image.open("photo_with_gps.jpg")

# Strip metadata (security interview question)
data = list(img.getdata())
clean_img = Image.new(img.mode, img.size)
clean_img.putdata(data)
clean_img.save("clean.jpg", "JPEG", exif=b"")

# Read specific metadata
exif = img.getexif()
if 36867 in exif: # DateTimeOriginal
print(exif[36867])


# Image Segmentation - Advanced computer vision
import numpy as np
import cv2

img = cv2.imread('input.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 180, 255, cv2.THRESH_BINARY_INV)

# Morphological operations
kernel = np.ones((2,2), np.uint8)
dilated = cv2.dilate(thresh, kernel, iterations=1)

# Find contours
contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
area = cv2.contourArea(cnt)
if area > 100: # Filter small contours
x, y, w, h = cv2.boundingRect(cnt)
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)

cv2.imwrite("segmented.jpg", img)