Data Science Machine Learning Data Analysis
Photo
### 2. Pruning
### 3. ONNX Export
### 4. TorchScript
---
## πΉ PyTorch Lightning Best Practices
### 1. LightningModule Structure
### 2. Advanced Lightning Features
---
## πΉ Best Practices Summary
1. For GANs: Use spectral norm, progressive growing, and TTUR
2. For VAEs: Monitor both reconstruction and KL divergence terms
3. For RL: Properly normalize rewards and use experience replay
4. For Deployment: Quantize, prune, and export to optimized formats
5. For Maintenance: Use PyTorch Lightning for reproducible experiments
---
### π What's Next?
In Part 6 (Final), we'll cover:
β‘οΈ Advanced Architectures (Graph NNs, Neural ODEs)
β‘οΈ Model Interpretation Techniques
β‘οΈ Production Deployment (TorchServe, Flask API)
β‘οΈ PyTorch Ecosystem (TorchVision, TorchText, TorchAudio)
#PyTorch #DeepLearning #GANs #ReinforcementLearning π
Practice Exercises:
1. Implement WGAN-GP with gradient penalty
2. Train a VAE on MNIST and visualize latent space
3. Build a DQN agent for CartPole environment
4. Quantize a pretrained ResNet and compare accuracy/speed
5. Convert a model to TorchScript and serve with Flask
parameters_to_prune = (
(model.conv1, 'weight'),
(model.fc1, 'weight'),
)
prune.global_unstructured(
parameters_to_prune,
pruning_method=prune.L1Unstructured,
amount=0.2
)
# Remove pruning reparameterization
for module, param in parameters_to_prune:
prune.remove(module, param)
### 3. ONNX Export
dummy_input = torch.randn(1, 3, 224, 224)
torch.onnx.export(
model,
dummy_input,
"model.onnx",
input_names=["input"],
output_names=["output"],
dynamic_axes={
"input": {0: "batch_size"},
"output": {0: "batch_size"}
}
)
### 4. TorchScript
# Tracing
example_input = torch.rand(1, 3, 224, 224)
traced_script = torch.jit.trace(model, example_input)
traced_script.save("traced_model.pt")
# Scripting
scripted_model = torch.jit.script(model)
scripted_model.save("scripted_model.pt")
---
## πΉ PyTorch Lightning Best Practices
### 1. LightningModule Structure
import pytorch_lightning as pl
class LitModel(pl.LightningModule):
def __init__(self, learning_rate=1e-3):
super().__init__()
self.save_hyperparameters()
self.model = nn.Sequential(
nn.Linear(28*28, 128),
nn.ReLU(),
nn.Linear(128, 10)
)
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = nn.functional.cross_entropy(y_hat, y)
self.log('train_loss', loss)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = nn.functional.cross_entropy(y_hat, y)
self.log('val_loss', loss)
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
# Training
trainer = pl.Trainer(gpus=1, max_epochs=10)
model = LitModel()
trainer.fit(model, train_loader, val_loader)
### 2. Advanced Lightning Features
# Mixed Precision
trainer = pl.Trainer(precision=16)
# Distributed Training
trainer = pl.Trainer(gpus=2, accelerator='ddp')
# Callbacks
early_stop = pl.callbacks.EarlyStopping(monitor='val_loss')
checkpoint = pl.callbacks.ModelCheckpoint(monitor='val_loss')
trainer = pl.Trainer(callbacks=[early_stop, checkpoint])
# Logging
trainer = pl.Trainer(logger=pl.loggers.TensorBoardLogger('logs/'))
---
## πΉ Best Practices Summary
1. For GANs: Use spectral norm, progressive growing, and TTUR
2. For VAEs: Monitor both reconstruction and KL divergence terms
3. For RL: Properly normalize rewards and use experience replay
4. For Deployment: Quantize, prune, and export to optimized formats
5. For Maintenance: Use PyTorch Lightning for reproducible experiments
---
### π What's Next?
In Part 6 (Final), we'll cover:
β‘οΈ Advanced Architectures (Graph NNs, Neural ODEs)
β‘οΈ Model Interpretation Techniques
β‘οΈ Production Deployment (TorchServe, Flask API)
β‘οΈ PyTorch Ecosystem (TorchVision, TorchText, TorchAudio)
#PyTorch #DeepLearning #GANs #ReinforcementLearning π
Practice Exercises:
1. Implement WGAN-GP with gradient penalty
2. Train a VAE on MNIST and visualize latent space
3. Build a DQN agent for CartPole environment
4. Quantize a pretrained ResNet and compare accuracy/speed
5. Convert a model to TorchScript and serve with Flask
# WGAN-GP Gradient Penalty
def compute_gradient_penalty(D, real_samples, fake_samples):
alpha = torch.rand(real_samples.size(0), 1, 1, 1).to(device)
interpolates = (alpha * real_samples + (1 - alpha) * fake_samples).requires_grad_(True)
d_interpolates = D(interpolates)
gradients = torch.autograd.grad(
outputs=d_interpolates,
inputs=interpolates,
grad_outputs=torch.ones_like(d_interpolates),
create_graph=True,
retain_graph=True,
only_inputs=True
)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gradient_penalty
MATLAB Tutorial for Computer Vision - Part 1/4 (Beginner's Guide)
This is the first part of a comprehensive 4-part tutorial series on using MATLAB for computer vision. Designed for absolute beginners, this tutorial will cover the fundamentals with practical examples.
Table of Contents:
1. Introduction to MATLAB for Computer Vision
2. Basic Image Operations
3. Image Visualization Techniques
4. Color Space Conversions
5. Basic Image Processing
6. Conclusion & Next Steps
let's start: https://codeprogrammer.notion.site/MATLAB-Tutorial-for-Computer-Vision-Part-1-4-Beginner-s-Guide-23bcd3a4dba9803b81bded6c392b5e04
This is the first part of a comprehensive 4-part tutorial series on using MATLAB for computer vision. Designed for absolute beginners, this tutorial will cover the fundamentals with practical examples.
Table of Contents:
1. Introduction to MATLAB for Computer Vision
2. Basic Image Operations
3. Image Visualization Techniques
4. Color Space Conversions
5. Basic Image Processing
6. Conclusion & Next Steps
let's start: https://codeprogrammer.notion.site/MATLAB-Tutorial-for-Computer-Vision-Part-1-4-Beginner-s-Guide-23bcd3a4dba9803b81bded6c392b5e04
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
β€3π1π₯1
MATLAB Computer Vision Tutorial - Part 2/4 (Intermediate Techniques)
Table of Contents:
1. Image Filtering and Enhancement
2. Morphological Operations
3. Feature Detection
4. Basic Object Recognition
5. Next Steps
Let's start:
https://codeprogrammer.notion.site/MATLAB-Computer-Vision-Tutorial-Part-2-4-Intermediate-Techniques-23bcd3a4dba980eb8813ec3c8c3322ef
Table of Contents:
1. Image Filtering and Enhancement
2. Morphological Operations
3. Feature Detection
4. Basic Object Recognition
5. Next Steps
Let's start:
https://codeprogrammer.notion.site/MATLAB-Computer-Vision-Tutorial-Part-2-4-Intermediate-Techniques-23bcd3a4dba980eb8813ec3c8c3322ef
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
π₯3π2β€1
MATLAB Computer Vision Mastery - Part 3/4 (Advanced Techniques with Comprehensive Exercises)
Table of Contents:
1. Geometric Transformations & Image Warping
2. Advanced Image Registration
3. Hough Transform & Shape Detection
4. Feature Extraction & Matching
5. Practical Exercises & Projects
6. Performance Optimization
7. Next Steps & Roadmap
Let's start: https://codeprogrammer.notion.site/MATLAB-Computer-Vision-Mastery-Part-3-4-Advanced-Techniques-with-Comprehensive-Exercises-23bcd3a4dba98017b0b4ea2e2e8da8f5
Table of Contents:
1. Geometric Transformations & Image Warping
2. Advanced Image Registration
3. Hough Transform & Shape Detection
4. Feature Extraction & Matching
5. Practical Exercises & Projects
6. Performance Optimization
7. Next Steps & Roadmap
Let's start: https://codeprogrammer.notion.site/MATLAB-Computer-Vision-Mastery-Part-3-4-Advanced-Techniques-with-Comprehensive-Exercises-23bcd3a4dba98017b0b4ea2e2e8da8f5
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
1β€4π3π₯2
Data Science Machine Learning Data Analysis
Photo
# π PyTorch Tutorial for Beginners - Part 6/6: Advanced Architectures & Production Deployment
#PyTorch #DeepLearning #GraphNNs #NeuralODEs #ModelServing #ExplainableAI
Welcome to the final part of our PyTorch series! This comprehensive lesson covers cutting-edge architectures, model interpretation techniques, production deployment strategies, and the broader PyTorch ecosystem.
---
## πΉ Graph Neural Networks (GNNs)
### 1. Core Concepts

Key Components:
- Node Features: Characteristics of each graph node
- Edge Features: Properties of connections between nodes
- Message Passing: Nodes aggregate information from neighbors
- Graph Pooling: Reduces graph to fixed-size representation
### 2. Implementing GNN with PyTorch Geometric
### 3. Advanced GNN Architectures
---
## πΉ Neural Ordinary Differential Equations (Neural ODEs)
### 1. Core Concepts

- Continuous-depth networks: Replace discrete layers with ODE solver
- Memory efficiency: Constant memory cost regardless of "depth"
- Adaptive computation: ODE solver adjusts evaluation points
#PyTorch #DeepLearning #GraphNNs #NeuralODEs #ModelServing #ExplainableAI
Welcome to the final part of our PyTorch series! This comprehensive lesson covers cutting-edge architectures, model interpretation techniques, production deployment strategies, and the broader PyTorch ecosystem.
---
## πΉ Graph Neural Networks (GNNs)
### 1. Core Concepts

Key Components:
- Node Features: Characteristics of each graph node
- Edge Features: Properties of connections between nodes
- Message Passing: Nodes aggregate information from neighbors
- Graph Pooling: Reduces graph to fixed-size representation
### 2. Implementing GNN with PyTorch Geometric
import torch_geometric as tg
from torch_geometric.nn import GCNConv, global_mean_pool
class GNN(torch.nn.Module):
def __init__(self, node_features, hidden_dim, num_classes):
super().__init__()
self.conv1 = GCNConv(node_features, hidden_dim)
self.conv2 = GCNConv(hidden_dim, hidden_dim)
self.classifier = nn.Linear(hidden_dim, num_classes)
def forward(self, data):
x, edge_index, batch = data.x, data.edge_index, data.batch
# Message passing
x = self.conv1(x, edge_index).relu()
x = self.conv2(x, edge_index)
# Graph-level pooling
x = global_mean_pool(x, batch)
# Classification
return self.classifier(x)
# Example usage
dataset = tg.datasets.Planetoid(root='/tmp/Cora', name='Cora')
model = GNN(node_features=dataset.num_node_features,
hidden_dim=64,
num_classes=dataset.num_classes).to(device)
# Specialized DataLoader
loader = tg.data.DataLoader(dataset, batch_size=32, shuffle=True)
### 3. Advanced GNN Architectures
# Graph Attention Network (GAT)
class GAT(torch.nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv1 = tg.nn.GATConv(in_channels, 8, heads=8, dropout=0.6)
self.conv2 = tg.nn.GATConv(8*8, out_channels, heads=1, concat=False, dropout=0.6)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = F.dropout(x, p=0.6, training=self.training)
x = F.elu(self.conv1(x, edge_index))
x = F.dropout(x, p=0.6, training=self.training)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)
# Graph Isomorphism Network (GIN)
class GIN(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels):
super().__init__()
self.conv1 = tg.nn.GINConv(
nn.Sequential(
nn.Linear(in_channels, hidden_channels),
nn.ReLU(),
nn.Linear(hidden_channels, hidden_channels)
), train_eps=True)
self.conv2 = tg.nn.GINConv(
nn.Sequential(
nn.Linear(hidden_channels, hidden_channels),
nn.ReLU(),
nn.Linear(hidden_channels, out_channels)
), train_eps=True)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = self.conv1(x, edge_index)
x = F.relu(x)
x = self.conv2(x, edge_index)
return x
---
## πΉ Neural Ordinary Differential Equations (Neural ODEs)
### 1. Core Concepts

- Continuous-depth networks: Replace discrete layers with ODE solver
- Memory efficiency: Constant memory cost regardless of "depth"
- Adaptive computation: ODE solver adjusts evaluation points
β€2
Data Science Machine Learning Data Analysis
Photo
### 2. Implementation with TorchDiffEq
### 3. Applications
---
## πΉ Model Interpretation Techniques
### 1. SHAP Values
### 2. Integrated Gradients
### 3. Attention Visualization
---
## πΉ Production Deployment
### 1. TorchServe
### 2. Flask API
### 3. ONNX Runtime
from torchdiffeq import odeint_adjoint as odeint
class ODEBlock(nn.Module):
def __init__(self, odefunc):
super().__init__()
self.odefunc = odefunc
self.integration_time = torch.tensor([0, 1]).float()
def forward(self, x):
self.integration_time = self.integration_time.to(x.device)
out = odeint(self.odefunc, x, self.integration_time,
rtol=1e-3, atol=1e-4)
return out[1]
class ODEFunc(nn.Module):
def __init__(self, dim):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, dim),
nn.Tanh(),
nn.Linear(dim, dim)
)
def forward(self, t, x):
return self.net(x)
class NeuralODE(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super().__init__()
self.downsampling = nn.Linear(input_dim, hidden_dim)
self.odeblock = ODEBlock(ODEFunc(hidden_dim))
self.upsampling = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = self.downsampling(x)
x = self.odeblock(x)
return self.upsampling(x)
### 3. Applications
# Time-series prediction
ode_ts = NeuralODE(input_dim=10, hidden_dim=64, output_dim=5)
# Continuous normalizing flows
class CNF(nn.Module):
def __init__(self, dim):
super().__init__()
self.odefunc = ODEFunc(dim)
self.odeblock = ODEBlock(self.odefunc)
def forward(self, x):
return self.odeblock(x)
---
## πΉ Model Interpretation Techniques
### 1. SHAP Values
import shap
# Create explainer
background = train_data[:100].to(device)
explainer = shap.DeepExplainer(model, background)
# Calculate SHAP values
test_sample = test_data[0:1].to(device)
shap_values = explainer.shap_values(test_sample)
# Visualize
shap.image_plot(shap_values, -test_sample.cpu().numpy())
### 2. Integrated Gradients
from captum.attr import IntegratedGradients
ig = IntegratedGradients(model)
attributions = ig.attribute(input_tensor,
target=pred_class_idx,
n_steps=50)
# Visualization
plt.imshow(attributions[0].cpu().detach().numpy().transpose(1,2,0))
plt.colorbar()
plt.show()
### 3. Attention Visualization
# For transformer models
def plot_attention(attention_weights, input_tokens):
fig, ax = plt.subplots(figsize=(10, 10))
im = ax.imshow(attention_weights.cpu().detach().numpy())
ax.set_xticks(range(len(input_tokens)))
ax.set_yticks(range(len(input_tokens))))
ax.set_xticklabels(input_tokens, rotation=45)
ax.set_yticklabels(input_tokens)
plt.colorbar(im)
plt.show()
---
## πΉ Production Deployment
### 1. TorchServe
# Package model
torch-model-archiver --model-name mymodel --version 1.0 \
--serialized-file model.pth \
--export-path model_store \
--handler my_handler.py
# Start server
torchserve --start --model-store model_store --models mymodel=mymodel.mar
# Query model
curl https://localhost:8080/predictions/mymodel -T sample_input.json
### 2. Flask API
from flask import Flask, request, jsonify
import torch
app = Flask(__name__)
model = torch.load('model.pth', map_location='cpu')
model.eval()
@app.route('/predict', methods=['POST'])
def predict():
data = request.get_json()
tensor = torch.FloatTensor(data['input'])
with torch.no_grad():
output = model(tensor)
return jsonify({'prediction': output.tolist()})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
### 3. ONNX Runtime
import onnxruntime as ort
# Create inference session
ort_session = ort.InferenceSession("model.onnx")
# Run inference
inputs = {"input": input_array}
outputs = ort_session.run(None, inputs)
β€2
Data Science Machine Learning Data Analysis
Photo
### 4. TensorRT Optimization
---
## πΉ PyTorch Ecosystem
### 1. TorchVision
### 2. TorchText
### 3. TorchAudio
---
## πΉ Best Practices Summary
1. For GNNs: Normalize node features and use appropriate pooling
2. For Neural ODEs: Monitor ODE solver statistics during training
3. For Interpretability: Combine multiple explanation methods
4. For Deployment: Profile models before deployment (latency/throughput)
5. For Production: Implement monitoring for model drift
---
### π Final Thoughts
Congratulations on completing this comprehensive PyTorch journey! You've learned:
βοΈ Core PyTorch fundamentals
βοΈ Deep neural networks & CNNs
βοΈ Sequence modeling with RNNs/Transformers
βοΈ Generative models & reinforcement learning
βοΈ Advanced architectures & deployment
#PyTorch #DeepLearning #MachineLearning ππ
Final Practice Exercises:
1. Implement a GNN for molecular property prediction
2. Train a Neural ODE on irregularly-sampled time series
3. Deploy a model with TorchServe and create a monitoring dashboard
4. Compare SHAP and Integrated Gradients for your CNN model
5. Optimize a transformer model with TensorRT
# Convert ONNX to TensorRT
trt_logger = trt.Logger(trt.Logger.WARNING)
with trt.Builder(trt_logger) as builder:
with builder.create_network(1) as network:
with trt.OnnxParser(network, trt_logger) as parser:
with open("model.onnx", "rb") as model:
parser.parse(model.read())
engine = builder.build_cuda_engine(network)
---
## πΉ PyTorch Ecosystem
### 1. TorchVision
from torchvision.models import efficientnet_b0
from torchvision.ops import nms, roi_align
# Pretrained models
model = efficientnet_b0(pretrained=True)
# Computer vision ops
boxes = torch.tensor([[10, 20, 50, 60], [15, 25, 40, 70]])
scores = torch.tensor([0.9, 0.8])
keep = nms(boxes, scores, iou_threshold=0.5)
### 2. TorchText
from torchtext.data import Field, BucketIterator
from torchtext.datasets import IMDB
# Define fields
TEXT = Field(tokenize='spacy', lower=True, include_lengths=True)
LABEL = Field(sequential=False, dtype=torch.float)
# Load dataset
train_data, test_data = IMDB.splits(TEXT, LABEL)
# Build vocabulary
TEXT.build_vocab(train_data, max_size=25000)
LABEL.build_vocab(train_data)
### 3. TorchAudio
import torchaudio
import torchaudio.transforms as T
# Load audio
waveform, sample_rate = torchaudio.load('audio.wav')
# Spectrogram
spectrogram = T.Spectrogram()(waveform)
# MFCC
mfcc = T.MFCC(sample_rate=sample_rate)(waveform)
# Audio augmentation
augmented = T.TimeStretch()(waveform, n_freq=0.5)
---
## πΉ Best Practices Summary
1. For GNNs: Normalize node features and use appropriate pooling
2. For Neural ODEs: Monitor ODE solver statistics during training
3. For Interpretability: Combine multiple explanation methods
4. For Deployment: Profile models before deployment (latency/throughput)
5. For Production: Implement monitoring for model drift
---
### π Final Thoughts
Congratulations on completing this comprehensive PyTorch journey! You've learned:
βοΈ Core PyTorch fundamentals
βοΈ Deep neural networks & CNNs
βοΈ Sequence modeling with RNNs/Transformers
βοΈ Generative models & reinforcement learning
βοΈ Advanced architectures & deployment
#PyTorch #DeepLearning #MachineLearning ππ
Final Practice Exercises:
1. Implement a GNN for molecular property prediction
2. Train a Neural ODE on irregularly-sampled time series
3. Deploy a model with TorchServe and create a monitoring dashboard
4. Compare SHAP and Integrated Gradients for your CNN model
5. Optimize a transformer model with TensorRT
# Molecular GNN starter
class MolecularGNN(nn.Module):
def __init__(self, node_features, edge_features, hidden_dim):
super().__init__()
self.node_encoder = nn.Linear(node_features, hidden_dim)
self.edge_encoder = nn.Linear(edge_features, hidden_dim)
self.conv = tg.nn.MessagePassing(aggr='mean')
def forward(self, data):
x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
x = self.node_encoder(x)
edge_attr = self.edge_encoder(edge_attr)
return self.conv(x, edge_index, edge_attr)
β€5
MATLAB Computer Vision Mastery - Part 4/4 (3D Vision, Motion Analysis & Final Project)
Table of Contents:
1. 3D Computer Vision Fundamentals
2. Motion Analysis & Tracking
3. Deep Learning for Computer Vision
4. Comprehensive Final Project
5. Performance Optimization & Deployment
6. Next Steps & Advanced Resources
Let's start: https://codeprogrammer.notion.site/MATLAB-Computer-Vision-Mastery-Part-4-4-3D-Vision-Motion-Analysis-Final-Project-23ccd3a4dba980acae7bdbbf974832fc
Table of Contents:
1. 3D Computer Vision Fundamentals
2. Motion Analysis & Tracking
3. Deep Learning for Computer Vision
4. Comprehensive Final Project
5. Performance Optimization & Deployment
6. Next Steps & Advanced Resources
Let's start: https://codeprogrammer.notion.site/MATLAB-Computer-Vision-Mastery-Part-4-4-3D-Vision-Motion-Analysis-Final-Project-23ccd3a4dba980acae7bdbbf974832fc
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
β€3π₯2
π Vision Transformer (ViT) Tutorial β Part 1: From CNNs to Transformers β The Revolution in Computer Vision
Let's start: https://hackmd.io/@husseinsheikho/vit-1
Let's start: https://hackmd.io/@husseinsheikho/vit-1
#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #NeuralNetworks #ImageClassification #AttentionIsAllYouNeed
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
π± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
β€3π1
π Vision Transformer (ViT) Tutorial β Part 2: Implementing ViT from Scratch in PyTorch
Let's start: https://hackmd.io/@husseinsheikho/vit-2
Let's start: https://hackmd.io/@husseinsheikho/vit-2
#VisionTransformer #ViTFromScratch #PyTorch #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #CodingTutorial #AttentionIsAllYouNeed
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
π± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
β€2
π Vision Transformer (ViT) Tutorial β Part 3: Pretraining, Transfer Learning & Real-World Applications
Let's start: https://hackmd.io/@husseinsheikho/vit-3
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
Let's start: https://hackmd.io/@husseinsheikho/vit-3
#VisionTransformer #TransferLearning #HuggingFace #ImageNet #FineTuning #AI #DeepLearning #ComputerVision #Transformers #ModelZoo
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
β€3
π Vision Transformer (ViT) Tutorial β Part 4: Beyond Classification β DETR, Segmentation & Video Transformers
Let's start learn: https://hackmd.io/@husseinsheikho/vit-4
#VisionTransformer #DETR #Segmenter #VideoTransformer #MAE #SelfSupervised #Multimodal #AI #DeepLearning #ComputerVision
Let's start learn: https://hackmd.io/@husseinsheikho/vit-4
#VisionTransformer #DETR #Segmenter #VideoTransformer #MAE #SelfSupervised #Multimodal #AI #DeepLearning #ComputerVision
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
β€2
π Vision Transformer (ViT) Tutorial β Part 5: Efficient Vision Transformers β MobileViT, TinyViT & Edge Deployment
Read lesson: https://hackmd.io/@husseinsheikho/vit-5
#MobileViT #TinyViT #EfficientViT #EdgeAI #ModelOptimization #ONNX #TensorRT #TorchServe #DeepLearning #ComputerVision #Transformers
Read lesson: https://hackmd.io/@husseinsheikho/vit-5
#MobileViT #TinyViT #EfficientViT #EdgeAI #ModelOptimization #ONNX #TensorRT #TorchServe #DeepLearning #ComputerVision #Transformers
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
β€2
π Vision Transformer (ViT) Tutorial β Part 6: Vision Transformers in Production β MLOps, Monitoring & CI/CD
Learn more: https://hackmd.io/@husseinsheikho/vit-6
#MLOps #ModelMonitoring #CIforML #MLflow #WandB #Kubeflow #ProductionAI #DeepLearning #ComputerVision #Transformers #AIOps
Learn more: https://hackmd.io/@husseinsheikho/vit-6
#MLOps #ModelMonitoring #CIforML #MLflow #WandB #Kubeflow #ProductionAI #DeepLearning #ComputerVision #Transformers #AIOps
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
β€1
π Vision Transformer (ViT) Tutorial β Part 7: The Future of Vision Transformers β Multimodal, 3D, and Beyond
Learn: https://hackmd.io/@husseinsheikho/vit-7
#FutureOfViT #MultimodalAI #3DViT #TimeSformer #PaLME #MedicalAI #EmbodiedAI #RetNet #Mamba #NextGenAI #DeepLearning #ComputerVision #Transformers
Learn: https://hackmd.io/@husseinsheikho/vit-7
#FutureOfViT #MultimodalAI #3DViT #TimeSformer #PaLME #MedicalAI #EmbodiedAI #RetNet #Mamba #NextGenAI #DeepLearning #ComputerVision #Transformers
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
β€2
π₯ Master Vision Transformers with 65+ MCQs! π₯
Are you preparing for AI interviews or want to test your knowledge in Vision Transformers (ViT)?
π§ Dive into 65+ curated Multiple Choice Questions covering the fundamentals, architecture, training, and applications of ViT β all with answers!
π Explore Now: https://hackmd.io/@husseinsheikho/vit-mcq
πΉ Table of Contents
Basic Concepts (Q1βQ15)
Architecture & Components (Q16βQ30)
Attention & Transformers (Q31βQ45)
Training & Optimization (Q46βQ55)
Advanced & Real-World Applications (Q56βQ65)
Answer Key & Explanations
Are you preparing for AI interviews or want to test your knowledge in Vision Transformers (ViT)?
π§ Dive into 65+ curated Multiple Choice Questions covering the fundamentals, architecture, training, and applications of ViT β all with answers!
π Explore Now: https://hackmd.io/@husseinsheikho/vit-mcq
πΉ Table of Contents
Basic Concepts (Q1βQ15)
Architecture & Components (Q16βQ30)
Attention & Transformers (Q31βQ45)
Training & Optimization (Q46βQ55)
Advanced & Real-World Applications (Q56βQ65)
Answer Key & Explanations
#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #MCQ #InterviewPrep
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
π± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
β€6
Forwarded from Python | Machine Learning | Coding | R
5 minutes of work - 127,000$ profit!
Opened access to the Jay Welcome Club where the AI bot does all the work itselfπ»
Usually you pay crazy money to get into this club, but today access is free for everyone!
23,432% on deposit earned by club members in the last 6 monthsπ
Just follow Jay's trades and earn! π
https://t.iss.one/+mONXtEgVxtU5NmZl
Opened access to the Jay Welcome Club where the AI bot does all the work itselfπ»
Usually you pay crazy money to get into this club, but today access is free for everyone!
23,432% on deposit earned by club members in the last 6 monthsπ
Just follow Jay's trades and earn! π
https://t.iss.one/+mONXtEgVxtU5NmZl
Forwarded from Python | Machine Learning | Coding | R
Join our WhatsApp channel
There are dedicated resources only for WhatsApp users
https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
There are dedicated resources only for WhatsApp users
https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
WhatsApp.com
Python | Machine Learning | Data Science | WhatsApp Channel
Python | Machine Learning | Data Science WhatsApp Channel. Welcome to our official WhatsApp Channel β your daily dose of AI, Python, and cutting-edge technology!
Here, we share:
Python tutorials and ready-to-use code snippets
AI & machine learning tipsβ¦
Here, we share:
Python tutorials and ready-to-use code snippets
AI & machine learning tipsβ¦
Forwarded from Python | Machine Learning | Coding | R
π Become an Agentic AI Builder β Free 12βWeek Certification by Ready Tensor
Ready Tensorβs Agentic AI Developer Certification is a free, project first 12βweek program designed to help you build and deploy real-world agentic AI systems. You'll complete three portfolio-ready projects using tools like LangChain, LangGraph, and vector databases, while deploying production-ready agents with FastAPI or Streamlit.
The course focuses on developing autonomous AI agents that can plan, reason, use memory, and act safely in complex environments. Certification is earned not by watching lectures, but by building β each project is reviewed against rigorous standards.
You can start anytime, and new cohorts begin monthly. Ideal for developers and engineers ready to go beyond chat prompts and start building true agentic systems.
π Apply now: https://www.readytensor.ai/agentic-ai-cert/
Ready Tensorβs Agentic AI Developer Certification is a free, project first 12βweek program designed to help you build and deploy real-world agentic AI systems. You'll complete three portfolio-ready projects using tools like LangChain, LangGraph, and vector databases, while deploying production-ready agents with FastAPI or Streamlit.
The course focuses on developing autonomous AI agents that can plan, reason, use memory, and act safely in complex environments. Certification is earned not by watching lectures, but by building β each project is reviewed against rigorous standards.
You can start anytime, and new cohorts begin monthly. Ideal for developers and engineers ready to go beyond chat prompts and start building true agentic systems.
π Apply now: https://www.readytensor.ai/agentic-ai-cert/
www.readytensor.ai
Agentic AI Developer Certification Program by Ready Tensor
Learn to build chatbots, AI assistants, and multi-agent systems with Ready Tensor's free,
self-paced Agentic AI Developer Certification. View the full program guide, project structure,
and how to get certified.
self-paced Agentic AI Developer Certification. View the full program guide, project structure,
and how to get certified.
β€1
π Ultimate Guide to Graph Neural Networks (GNNs): Part 1 β Foundations of Graph Theory & Why GNNs Revolutionize AI
Duration: ~45 minutes reading time | Comprehensive beginner-to-advanced introduction
Let's start: https://hackmd.io/@husseinsheikho/GNN-1
Duration: ~45 minutes reading time | Comprehensive beginner-to-advanced introduction
Let's start: https://hackmd.io/@husseinsheikho/GNN-1
#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #NodeClassification #LinkPrediction #GraphRepresentation #AIforBeginners #AdvancedAIο»Ώ
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
π Ultimate Guide to Graph Neural Networks (GNNs): Part 2 β The Message Passing Framework: Mathematical Heart of All GNNs
Duration: ~60 minutes reading time | Comprehensive deep dive into the core mechanism powering modern GNNs
Let's study: https://hackmd.io/@husseinsheikho/GNN-2
Duration: ~60 minutes reading time | Comprehensive deep dive into the core mechanism powering modern GNNs
Let's study: https://hackmd.io/@husseinsheikho/GNN-2
#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #MessagePassing #GraphAlgorithms #NodeClassification #LinkPrediction #GraphRepresentation #AIforBeginners #AdvancedAI
βοΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
β€3π€©1