Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence
37.3K subscribers
283 photos
76 files
336 links
Free Datasets For Data Science Projects & Portfolio

Buy ads: https://telega.io/c/DataPortfolio

For Promotions/ads: @coderfun @love_data
Download Telegram
Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence pinned ยซ๐Ÿš€๐Ÿ”ฅ ๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ๐—ป ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐—•๐˜‚๐—ถ๐—น๐—ฑ๐—ฒ๐—ฟ โ€” ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ Master the most in-demand AI skill in todayโ€™s job market: building autonomous AI systems. In Ready Tensorโ€™s free, project-first program, youโ€™ll create three portfolio-ready projects using ๐—Ÿ๐—ฎ๐—ป๐—ด๐—–๐—ต๐—ฎ๐—ถ๐—ปโ€ฆยป
Artificial Intelligence on WhatsApp ๐Ÿš€

Top AI Channels on WhatsApp!


1. ChatGPT โ€“ Your go-to AI for anything and everything. https://whatsapp.com/channel/0029VapThS265yDAfwe97c23

2. OpenAI โ€“ Your gateway to cutting-edge artificial intelligence innovation. https://whatsapp.com/channel/0029VbAbfqcLtOj7Zen5tt3o

3. Microsoft Copilot โ€“ Your productivity powerhouse. https://whatsapp.com/channel/0029VbAW0QBDOQIgYcbwBd1l

4. Perplexity AI โ€“ Your AI-powered research buddy with real-time answers. https://whatsapp.com/channel/0029VbAa05yISTkGgBqyC00U

5. Generative AI โ€“ Your creative partner for text, images, code, and more. https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U

6. Prompt Engineering โ€“ Your secret weapon to get the best out of AI. https://whatsapp.com/channel/0029Vb6ISO1Fsn0kEemhE03b

7. AI Tools โ€“ Your toolkit for automating, analyzing, and accelerating everything. https://whatsapp.com/channel/0029VaojSv9LCoX0gBZUxX3B

8. AI Studio โ€“ Everything about AI & Tech https://whatsapp.com/channel/0029VbAWNue1iUxjLo2DFx2U

9. Google Gemini โ€“ Generate images & videos with AI. https://whatsapp.com/channel/0029Vb5Q4ly3mFY3Jz7qIu3i/103

10. Data Science & Machine Learning โ€“ Your fuel for insights, predictions, and smarter decisions. https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

11. Data Science Projects โ€“ Your engine for building smarter, self-learning systems. https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z/208

React โค๏ธ for more
โค12
๐Ÿš€๐Ÿ”ฅ ๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ๐—ป ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐—•๐˜‚๐—ถ๐—น๐—ฑ๐—ฒ๐—ฟ โ€” ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ
Master the most in-demand AI skill in todayโ€™s job market: building autonomous AI systems.

In Ready Tensorโ€™s free, project-first program, youโ€™ll create three portfolio-ready projects using ๐—Ÿ๐—ฎ๐—ป๐—ด๐—–๐—ต๐—ฎ๐—ถ๐—ป, ๐—Ÿ๐—ฎ๐—ป๐—ด๐—š๐—ฟ๐—ฎ๐—ฝ๐—ต, and vector databases โ€” and deploy production-ready agents that employers will notice.

Includes guided lectures, videos, and code.
๐—™๐—ฟ๐—ฒ๐—ฒ. ๐—ฆ๐—ฒ๐—น๐—ณ-๐—ฝ๐—ฎ๐—ฐ๐—ฒ๐—ฑ. ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ-๐—ฐ๐—ต๐—ฎ๐—ป๐—ด๐—ถ๐—ป๐—ด.

๐Ÿ‘‰ Apply now: https://go.readytensor.ai/cert-552-agentic-ai-certification
โค6
Complete SQL road map
๐Ÿ‘‡๐Ÿ‘‡

1.Intro to SQL
โ€ข Definition
โ€ข Purpose
โ€ข Relational DBs
โ€ข DBMS

2.Basic SQL Syntax
โ€ข SELECT
โ€ข FROM
โ€ข WHERE
โ€ข ORDER BY
โ€ข GROUP BY

3. Data Types
โ€ข Integer
โ€ข Floating-Point
โ€ข Character
โ€ข Date
โ€ข VARCHAR
โ€ข TEXT
โ€ข BLOB
โ€ข BOOLEAN

4.Sub languages
โ€ข DML
โ€ข DDL
โ€ข DQL
โ€ข DCL
โ€ข TCL

5. Data Manipulation
โ€ข INSERT
โ€ข UPDATE
โ€ข DELETE

6. Data Definition
โ€ข CREATE
โ€ข ALTER
โ€ข DROP
โ€ข Indexes

7.Query Filtering and Sorting
โ€ข WHERE
โ€ข AND
โ€ข OR Conditions
โ€ข Ascending
โ€ข Descending

8. Data Aggregation
โ€ข SUM
โ€ข AVG
โ€ข COUNT
โ€ข MIN
โ€ข MAX

9.Joins and Relationships
โ€ข INNER JOIN
โ€ข LEFT JOIN
โ€ข RIGHT JOIN
โ€ข Self-Joins
โ€ข Cross Joins
โ€ข FULL OUTER JOIN

10.Subqueries
โ€ข Subqueries used in
โ€ข Filtering data
โ€ข Aggregating data
โ€ข Joining tables
โ€ข Correlated Subqueries

11.Views
โ€ข Creating
โ€ข Modifying
โ€ข Dropping Views

12.Transactions
โ€ข ACID Properties
โ€ข COMMIT
โ€ข ROLLBACK
โ€ข SAVEPOINT
โ€ข ROLLBACK TO SAVEPOINT

13.Stored Procedures
โ€ข CREATE PROCEDURE
โ€ข ALTER PROCEDURE
โ€ข DROP PROCEDURE
โ€ข EXECUTE PROCEDURE
โ€ข User-Defined Functions (UDFs)

14.Triggers
โ€ข Trigger Events
โ€ข Trigger Execution and Syntax

15. Security and Permissions
โ€ข CREATE USER
โ€ข GRANT
โ€ข REVOKE
โ€ข ALTER USER
โ€ข DROP USER

16.Optimizations
โ€ข Indexing Strategies
โ€ข Query Optimization

17.Normalization
โ€ข 1NF(Normal Form)
โ€ข 2NF
โ€ข 3NF
โ€ข BCNF

18.Backup and Recovery
โ€ข Database Backups
โ€ข Point-in-Time Recovery

19.NoSQL Databases
โ€ข MongoDB
โ€ข Cassandra etc...
โ€ข Key differences

20. Data Integrity
โ€ข Primary Key
โ€ข Foreign Key

21.Advanced SQL Queries
โ€ข Window Functions
โ€ข Common Table Expressions (CTEs)

22.Full-Text Search
โ€ข Full-Text Indexes
โ€ข Search Optimization

23. Data Import and Export
โ€ข Importing Data
โ€ข Exporting Data (CSV, JSON)
โ€ข Using SQL Dump Files

24.Database Design
โ€ข Entity-Relationship Diagrams
โ€ข Normalization Techniques

25.Advanced Indexing
โ€ข Composite Indexes
โ€ข Covering Indexes

26.Database Transactions
โ€ข Savepoints
โ€ข Nested Transactions
โ€ข Two-Phase Commit Protocol

27.Performance Tuning
โ€ข Query Profiling and Analysis
โ€ข Query Cache Optimization

------------------ END -------------------
โค9
Essential Topics to Master Data Science Interviews: ๐Ÿš€

SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables

2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries

3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)

Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages

2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets

3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)

Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting

2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)

3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards

Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)

2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX

3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes

Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.

Show some โค๏ธ if you're ready to elevate your data science game! ๐Ÿ“Š

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค8๐Ÿ”ฅ2
Essential Skills to Master for a Data Analytics Career

1๏ธโƒฃ SQL ๐Ÿ—‚๏ธ Learn how to query databases, use joins, aggregate data, and write optimized SQL queries.

2๏ธโƒฃ Data Visualization ๐Ÿ“Š Communicate insights effectively using tools like Power BI, Tableau, and Excel charts.

3๏ธโƒฃ Python for Data Analysis ๐Ÿ Use libraries like Pandas, NumPy, and Matplotlib to manipulate and analyze data efficiently.

4๏ธโƒฃ Statistical Thinking ๐Ÿ“ˆ Understand key concepts like probability, hypothesis testing, and regression analysis for data-driven decisions.

5๏ธโƒฃ Business Acumen ๐Ÿ’ผ Know how to translate raw data into actionable insights that drive business growth.

6๏ธโƒฃ Data Cleaning & Wrangling ๐Ÿงน Real-world data is messyโ€”learn techniques to handle missing values, duplicates, and outliers.

7๏ธโƒฃ Excel Proficiency ๐Ÿ“‘ Master formulas, PivotTables, and Power Query for quick and effective data analysis.

8๏ธโƒฃ Communication & Storytelling ๐ŸŽค Turn complex data findings into compelling narratives that stakeholders can understand.

9๏ธโƒฃ Critical Thinking & Problem-Solving ๐Ÿ” Go beyond numbersโ€”ask the right questions and identify meaningful patterns in data.

๐Ÿ”Ÿ Continuous Learning & AI Integration ๐Ÿค– Stay updated with new analytics trends and leverage AI for automation and insights.

Master these skills, and youโ€™ll be well on your way to becoming a top-tier data analyst! ๐Ÿš€

Like for detailed explanation โค๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค5๐Ÿ”ฅ1
๐Ÿ”…SQL Revision Notes for Interview๐Ÿ’ก
โค5๐Ÿ”ฅ2
Mathematics for Machine Learning

Published by Cambridge University Press (published April 2020)

https://mml-book.com

PDF: https://mml-book.github.io/book/mml-book.pdf
โค4
Gender-and-Age-Detection-master.zip
90.7 MB
๐Ÿ”Ž Gender & Age Detection using Python Machine Learning! ๐Ÿค–

React for more โค๏ธ
โค12
Complete Data Science Roadmap
๐Ÿ‘‡๐Ÿ‘‡

1. Introduction to Data Science
- Overview and Importance
- Data Science Lifecycle
- Key Roles (Data Scientist, Analyst, Engineer)

2. Mathematics and Statistics
- Probability and Distributions
- Descriptive/Inferential Statistics
- Hypothesis Testing
- Linear Algebra and Calculus Basics

3. Programming Languages
- Python: NumPy, Pandas, Matplotlib
- R: dplyr, ggplot2
- SQL: Joins, Aggregations, CRUD

4. Data Collection & Preprocessing
- Data Cleaning and Wrangling
- Handling Missing Data
- Feature Engineering

5. Exploratory Data Analysis (EDA)
- Summary Statistics
- Data Visualization (Histograms, Box Plots, Correlation)

6. Machine Learning
- Supervised (Linear/Logistic Regression, Decision Trees)
- Unsupervised (K-Means, PCA)
- Model Selection and Cross-Validation

7. Advanced Machine Learning
- SVM, Random Forests, Boosting
- Neural Networks Basics

8. Deep Learning
- Neural Networks Architecture
- CNNs for Image Data
- RNNs for Sequential Data

9. Natural Language Processing (NLP)
- Text Preprocessing
- Sentiment Analysis
- Word Embeddings (Word2Vec)

10. Data Visualization & Storytelling
- Dashboards (Tableau, Power BI)
- Telling Stories with Data

11. Model Deployment
- Deploy with Flask or Django
- Monitoring and Retraining Models

12. Big Data & Cloud
- Introduction to Hadoop, Spark
- Cloud Tools (AWS, Google Cloud)

13. Data Engineering Basics
- ETL Pipelines
- Data Warehousing (Redshift, BigQuery)

14. Ethics in Data Science
- Ethical Data Usage
- Bias in AI Models

15. Tools for Data Science
- Jupyter, Git, Docker

16. Career Path & Certifications
- Building a Data Science Portfolio

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Free Notes & Books to learn Data Science: https://t.iss.one/datasciencefree

Python Project Ideas: https://t.iss.one/dsabooks/85

Best Resources to learn Data Science ๐Ÿ‘‡๐Ÿ‘‡

Python Tutorial

Data Science Course by Kaggle

Machine Learning Course by Google

Best Data Science & Machine Learning Resources

Interview Process for Data Science Role at Amazon

Python Interview Resources

Join @free4unow_backup for more free courses

Like for more โค๏ธ

ENJOY LEARNING๐Ÿ‘๐Ÿ‘
โค7๐Ÿ‘1๐Ÿ”ฅ1
Few ways to optimise SQL Queries ๐Ÿ‘‡๐Ÿ‘‡

Use Indexing: Properly indexing your database tables can significantly speed up query performance by allowing the database to quickly locate the rows needed for a query.

Optimize Joins: Minimize the number of joins and use appropriate join types (e.g., INNER JOIN, LEFT JOIN) to ensure efficient data retrieval.

Avoid SELECT * : Instead of selecting all columns using SELECT *, explicitly specify only the columns needed for the query to reduce unnecessary data transfer and processing overhead.

Use WHERE Clause Wisely: Filter rows early in the query using WHERE clause to reduce the dataset size before joining or aggregating data.

Avoid Subqueries: Whenever possible, rewrite subqueries as JOINs or use Common Table Expressions (CTEs) for better performance.

Limit the Use of DISTINCT: Minimize the use of DISTINCT as it requires sorting and duplicate removal, which can be resource-intensive for large datasets.

Optimize GROUP BY and ORDER BY: Use GROUP BY and ORDER BY clauses judiciously, and ensure that they are using indexed columns whenever possible to avoid unnecessary sorting.

Consider Partitioning: Partition large tables to distribute data across multiple nodes, which can improve query performance by reducing I/O operations.

Monitor Query Performance: Regularly monitor query performance using tools like query execution plans, database profiler, and performance monitoring tools to identify and address bottlenecks.

Hope it helps :)
โค5๐Ÿ‘4