Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence pinned ยซ๐๐ฅ ๐๐ฒ๐ฐ๐ผ๐บ๐ฒ ๐ฎ๐ป ๐๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐๐ ๐๐๐ถ๐น๐ฑ๐ฒ๐ฟ โ ๐๐ฟ๐ฒ๐ฒ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ Master the most in-demand AI skill in todayโs job market: building autonomous AI systems. In Ready Tensorโs free, project-first program, youโll create three portfolio-ready projects using ๐๐ฎ๐ป๐ด๐๐ต๐ฎ๐ถ๐ปโฆยป
Artificial Intelligence on WhatsApp ๐
Top AI Channels on WhatsApp!
1. ChatGPT โ Your go-to AI for anything and everything. https://whatsapp.com/channel/0029VapThS265yDAfwe97c23
2. OpenAI โ Your gateway to cutting-edge artificial intelligence innovation. https://whatsapp.com/channel/0029VbAbfqcLtOj7Zen5tt3o
3. Microsoft Copilot โ Your productivity powerhouse. https://whatsapp.com/channel/0029VbAW0QBDOQIgYcbwBd1l
4. Perplexity AI โ Your AI-powered research buddy with real-time answers. https://whatsapp.com/channel/0029VbAa05yISTkGgBqyC00U
5. Generative AI โ Your creative partner for text, images, code, and more. https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
6. Prompt Engineering โ Your secret weapon to get the best out of AI. https://whatsapp.com/channel/0029Vb6ISO1Fsn0kEemhE03b
7. AI Tools โ Your toolkit for automating, analyzing, and accelerating everything. https://whatsapp.com/channel/0029VaojSv9LCoX0gBZUxX3B
8. AI Studio โ Everything about AI & Tech https://whatsapp.com/channel/0029VbAWNue1iUxjLo2DFx2U
9. Google Gemini โ Generate images & videos with AI. https://whatsapp.com/channel/0029Vb5Q4ly3mFY3Jz7qIu3i/103
10. Data Science & Machine Learning โ Your fuel for insights, predictions, and smarter decisions. https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. Data Science Projects โ Your engine for building smarter, self-learning systems. https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z/208
React โค๏ธ for more
Top AI Channels on WhatsApp!
1. ChatGPT โ Your go-to AI for anything and everything. https://whatsapp.com/channel/0029VapThS265yDAfwe97c23
2. OpenAI โ Your gateway to cutting-edge artificial intelligence innovation. https://whatsapp.com/channel/0029VbAbfqcLtOj7Zen5tt3o
3. Microsoft Copilot โ Your productivity powerhouse. https://whatsapp.com/channel/0029VbAW0QBDOQIgYcbwBd1l
4. Perplexity AI โ Your AI-powered research buddy with real-time answers. https://whatsapp.com/channel/0029VbAa05yISTkGgBqyC00U
5. Generative AI โ Your creative partner for text, images, code, and more. https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
6. Prompt Engineering โ Your secret weapon to get the best out of AI. https://whatsapp.com/channel/0029Vb6ISO1Fsn0kEemhE03b
7. AI Tools โ Your toolkit for automating, analyzing, and accelerating everything. https://whatsapp.com/channel/0029VaojSv9LCoX0gBZUxX3B
8. AI Studio โ Everything about AI & Tech https://whatsapp.com/channel/0029VbAWNue1iUxjLo2DFx2U
9. Google Gemini โ Generate images & videos with AI. https://whatsapp.com/channel/0029Vb5Q4ly3mFY3Jz7qIu3i/103
10. Data Science & Machine Learning โ Your fuel for insights, predictions, and smarter decisions. https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. Data Science Projects โ Your engine for building smarter, self-learning systems. https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z/208
React โค๏ธ for more
โค12
๐๐ฅ ๐๐ฒ๐ฐ๐ผ๐บ๐ฒ ๐ฎ๐ป ๐๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐๐ ๐๐๐ถ๐น๐ฑ๐ฒ๐ฟ โ ๐๐ฟ๐ฒ๐ฒ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ
Master the most in-demand AI skill in todayโs job market: building autonomous AI systems.
In Ready Tensorโs free, project-first program, youโll create three portfolio-ready projects using ๐๐ฎ๐ป๐ด๐๐ต๐ฎ๐ถ๐ป, ๐๐ฎ๐ป๐ด๐๐ฟ๐ฎ๐ฝ๐ต, and vector databases โ and deploy production-ready agents that employers will notice.
Includes guided lectures, videos, and code.
๐๐ฟ๐ฒ๐ฒ. ๐ฆ๐ฒ๐น๐ณ-๐ฝ๐ฎ๐ฐ๐ฒ๐ฑ. ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ-๐ฐ๐ต๐ฎ๐ป๐ด๐ถ๐ป๐ด.
๐ Apply now: https://go.readytensor.ai/cert-552-agentic-ai-certification
Master the most in-demand AI skill in todayโs job market: building autonomous AI systems.
In Ready Tensorโs free, project-first program, youโll create three portfolio-ready projects using ๐๐ฎ๐ป๐ด๐๐ต๐ฎ๐ถ๐ป, ๐๐ฎ๐ป๐ด๐๐ฟ๐ฎ๐ฝ๐ต, and vector databases โ and deploy production-ready agents that employers will notice.
Includes guided lectures, videos, and code.
๐๐ฟ๐ฒ๐ฒ. ๐ฆ๐ฒ๐น๐ณ-๐ฝ๐ฎ๐ฐ๐ฒ๐ฑ. ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ-๐ฐ๐ต๐ฎ๐ป๐ด๐ถ๐ป๐ด.
๐ Apply now: https://go.readytensor.ai/cert-552-agentic-ai-certification
www.readytensor.ai
Agentic AI Developer Certification Program by Ready Tensor
Learn to build chatbots, AI assistants, and multi-agent systems with Ready Tensor's free, self-paced, and beginner-friendly Agentic AI Developer Certification. View the full program guide and how to get certified.
โค6
Hi guys,
Now you can directly find job opportunities on WhatsApp. Here is the list of top job related channels on WhatsApp ๐
Latest Jobs & Internship Opportunities: https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Python & AI Jobs: https://whatsapp.com/channel/0029VaxtmHsLikgJ2VtGbu1R
Software Engineer Jobs: https://whatsapp.com/channel/0029VatL9a22kNFtPtLApJ2L
Data Science Jobs: https://whatsapp.com/channel/0029VaxTMmQADTOA746w7U2P
Data Analyst Jobs: https://whatsapp.com/channel/0029Vaxjq5a4dTnKNrdeiZ0J
Web Developer Jobs: https://whatsapp.com/channel/0029Vb1raTiDjiOias5ARu2p
Remote Jobs: https://whatsapp.com/channel/0029Vb1RrFuC1Fu3E0aiac2E
Google Jobs: https://whatsapp.com/channel/0029VaxngnVInlqV6xJhDs3m
Hope it helps :)
Now you can directly find job opportunities on WhatsApp. Here is the list of top job related channels on WhatsApp ๐
Latest Jobs & Internship Opportunities: https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Python & AI Jobs: https://whatsapp.com/channel/0029VaxtmHsLikgJ2VtGbu1R
Software Engineer Jobs: https://whatsapp.com/channel/0029VatL9a22kNFtPtLApJ2L
Data Science Jobs: https://whatsapp.com/channel/0029VaxTMmQADTOA746w7U2P
Data Analyst Jobs: https://whatsapp.com/channel/0029Vaxjq5a4dTnKNrdeiZ0J
Web Developer Jobs: https://whatsapp.com/channel/0029Vb1raTiDjiOias5ARu2p
Remote Jobs: https://whatsapp.com/channel/0029Vb1RrFuC1Fu3E0aiac2E
Google Jobs: https://whatsapp.com/channel/0029VaxngnVInlqV6xJhDs3m
Hope it helps :)
โค4
Complete SQL road map
๐๐
1.Intro to SQL
โข Definition
โข Purpose
โข Relational DBs
โข DBMS
2.Basic SQL Syntax
โข SELECT
โข FROM
โข WHERE
โข ORDER BY
โข GROUP BY
3. Data Types
โข Integer
โข Floating-Point
โข Character
โข Date
โข VARCHAR
โข TEXT
โข BLOB
โข BOOLEAN
4.Sub languages
โข DML
โข DDL
โข DQL
โข DCL
โข TCL
5. Data Manipulation
โข INSERT
โข UPDATE
โข DELETE
6. Data Definition
โข CREATE
โข ALTER
โข DROP
โข Indexes
7.Query Filtering and Sorting
โข WHERE
โข AND
โข OR Conditions
โข Ascending
โข Descending
8. Data Aggregation
โข SUM
โข AVG
โข COUNT
โข MIN
โข MAX
9.Joins and Relationships
โข INNER JOIN
โข LEFT JOIN
โข RIGHT JOIN
โข Self-Joins
โข Cross Joins
โข FULL OUTER JOIN
10.Subqueries
โข Subqueries used in
โข Filtering data
โข Aggregating data
โข Joining tables
โข Correlated Subqueries
11.Views
โข Creating
โข Modifying
โข Dropping Views
12.Transactions
โข ACID Properties
โข COMMIT
โข ROLLBACK
โข SAVEPOINT
โข ROLLBACK TO SAVEPOINT
13.Stored Procedures
โข CREATE PROCEDURE
โข ALTER PROCEDURE
โข DROP PROCEDURE
โข EXECUTE PROCEDURE
โข User-Defined Functions (UDFs)
14.Triggers
โข Trigger Events
โข Trigger Execution and Syntax
15. Security and Permissions
โข CREATE USER
โข GRANT
โข REVOKE
โข ALTER USER
โข DROP USER
16.Optimizations
โข Indexing Strategies
โข Query Optimization
17.Normalization
โข 1NF(Normal Form)
โข 2NF
โข 3NF
โข BCNF
18.Backup and Recovery
โข Database Backups
โข Point-in-Time Recovery
19.NoSQL Databases
โข MongoDB
โข Cassandra etc...
โข Key differences
20. Data Integrity
โข Primary Key
โข Foreign Key
21.Advanced SQL Queries
โข Window Functions
โข Common Table Expressions (CTEs)
22.Full-Text Search
โข Full-Text Indexes
โข Search Optimization
23. Data Import and Export
โข Importing Data
โข Exporting Data (CSV, JSON)
โข Using SQL Dump Files
24.Database Design
โข Entity-Relationship Diagrams
โข Normalization Techniques
25.Advanced Indexing
โข Composite Indexes
โข Covering Indexes
26.Database Transactions
โข Savepoints
โข Nested Transactions
โข Two-Phase Commit Protocol
27.Performance Tuning
โข Query Profiling and Analysis
โข Query Cache Optimization
------------------ END -------------------
๐๐
1.Intro to SQL
โข Definition
โข Purpose
โข Relational DBs
โข DBMS
2.Basic SQL Syntax
โข SELECT
โข FROM
โข WHERE
โข ORDER BY
โข GROUP BY
3. Data Types
โข Integer
โข Floating-Point
โข Character
โข Date
โข VARCHAR
โข TEXT
โข BLOB
โข BOOLEAN
4.Sub languages
โข DML
โข DDL
โข DQL
โข DCL
โข TCL
5. Data Manipulation
โข INSERT
โข UPDATE
โข DELETE
6. Data Definition
โข CREATE
โข ALTER
โข DROP
โข Indexes
7.Query Filtering and Sorting
โข WHERE
โข AND
โข OR Conditions
โข Ascending
โข Descending
8. Data Aggregation
โข SUM
โข AVG
โข COUNT
โข MIN
โข MAX
9.Joins and Relationships
โข INNER JOIN
โข LEFT JOIN
โข RIGHT JOIN
โข Self-Joins
โข Cross Joins
โข FULL OUTER JOIN
10.Subqueries
โข Subqueries used in
โข Filtering data
โข Aggregating data
โข Joining tables
โข Correlated Subqueries
11.Views
โข Creating
โข Modifying
โข Dropping Views
12.Transactions
โข ACID Properties
โข COMMIT
โข ROLLBACK
โข SAVEPOINT
โข ROLLBACK TO SAVEPOINT
13.Stored Procedures
โข CREATE PROCEDURE
โข ALTER PROCEDURE
โข DROP PROCEDURE
โข EXECUTE PROCEDURE
โข User-Defined Functions (UDFs)
14.Triggers
โข Trigger Events
โข Trigger Execution and Syntax
15. Security and Permissions
โข CREATE USER
โข GRANT
โข REVOKE
โข ALTER USER
โข DROP USER
16.Optimizations
โข Indexing Strategies
โข Query Optimization
17.Normalization
โข 1NF(Normal Form)
โข 2NF
โข 3NF
โข BCNF
18.Backup and Recovery
โข Database Backups
โข Point-in-Time Recovery
19.NoSQL Databases
โข MongoDB
โข Cassandra etc...
โข Key differences
20. Data Integrity
โข Primary Key
โข Foreign Key
21.Advanced SQL Queries
โข Window Functions
โข Common Table Expressions (CTEs)
22.Full-Text Search
โข Full-Text Indexes
โข Search Optimization
23. Data Import and Export
โข Importing Data
โข Exporting Data (CSV, JSON)
โข Using SQL Dump Files
24.Database Design
โข Entity-Relationship Diagrams
โข Normalization Techniques
25.Advanced Indexing
โข Composite Indexes
โข Covering Indexes
26.Database Transactions
โข Savepoints
โข Nested Transactions
โข Two-Phase Commit Protocol
27.Performance Tuning
โข Query Profiling and Analysis
โข Query Cache Optimization
------------------ END -------------------
โค9
Essential Topics to Master Data Science Interviews: ๐
SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some โค๏ธ if you're ready to elevate your data science game! ๐
ENJOY LEARNING ๐๐
SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some โค๏ธ if you're ready to elevate your data science game! ๐
ENJOY LEARNING ๐๐
โค8๐ฅ2
Essential Skills to Master for a Data Analytics Career
1๏ธโฃ SQL ๐๏ธ Learn how to query databases, use joins, aggregate data, and write optimized SQL queries.
2๏ธโฃ Data Visualization ๐ Communicate insights effectively using tools like Power BI, Tableau, and Excel charts.
3๏ธโฃ Python for Data Analysis ๐ Use libraries like Pandas, NumPy, and Matplotlib to manipulate and analyze data efficiently.
4๏ธโฃ Statistical Thinking ๐ Understand key concepts like probability, hypothesis testing, and regression analysis for data-driven decisions.
5๏ธโฃ Business Acumen ๐ผ Know how to translate raw data into actionable insights that drive business growth.
6๏ธโฃ Data Cleaning & Wrangling ๐งน Real-world data is messyโlearn techniques to handle missing values, duplicates, and outliers.
7๏ธโฃ Excel Proficiency ๐ Master formulas, PivotTables, and Power Query for quick and effective data analysis.
8๏ธโฃ Communication & Storytelling ๐ค Turn complex data findings into compelling narratives that stakeholders can understand.
9๏ธโฃ Critical Thinking & Problem-Solving ๐ Go beyond numbersโask the right questions and identify meaningful patterns in data.
๐ Continuous Learning & AI Integration ๐ค Stay updated with new analytics trends and leverage AI for automation and insights.
Master these skills, and youโll be well on your way to becoming a top-tier data analyst! ๐
Like for detailed explanation โค๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
1๏ธโฃ SQL ๐๏ธ Learn how to query databases, use joins, aggregate data, and write optimized SQL queries.
2๏ธโฃ Data Visualization ๐ Communicate insights effectively using tools like Power BI, Tableau, and Excel charts.
3๏ธโฃ Python for Data Analysis ๐ Use libraries like Pandas, NumPy, and Matplotlib to manipulate and analyze data efficiently.
4๏ธโฃ Statistical Thinking ๐ Understand key concepts like probability, hypothesis testing, and regression analysis for data-driven decisions.
5๏ธโฃ Business Acumen ๐ผ Know how to translate raw data into actionable insights that drive business growth.
6๏ธโฃ Data Cleaning & Wrangling ๐งน Real-world data is messyโlearn techniques to handle missing values, duplicates, and outliers.
7๏ธโฃ Excel Proficiency ๐ Master formulas, PivotTables, and Power Query for quick and effective data analysis.
8๏ธโฃ Communication & Storytelling ๐ค Turn complex data findings into compelling narratives that stakeholders can understand.
9๏ธโฃ Critical Thinking & Problem-Solving ๐ Go beyond numbersโask the right questions and identify meaningful patterns in data.
๐ Continuous Learning & AI Integration ๐ค Stay updated with new analytics trends and leverage AI for automation and insights.
Master these skills, and youโll be well on your way to becoming a top-tier data analyst! ๐
Like for detailed explanation โค๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค5๐ฅ1
๐
SQL Revision Notes for Interview๐ก
โค5๐ฅ2
Mathematics for Machine Learning
Published by Cambridge University Press (published April 2020)
https://mml-book.com
PDF: https://mml-book.github.io/book/mml-book.pdf
Published by Cambridge University Press (published April 2020)
https://mml-book.com
PDF: https://mml-book.github.io/book/mml-book.pdf
โค4
Gender-and-Age-Detection-master.zip
90.7 MB
๐ Gender & Age Detection using Python Machine Learning! ๐ค
React for more โค๏ธ
React for more โค๏ธ
โค12
Complete Data Science Roadmap
๐๐
1. Introduction to Data Science
- Overview and Importance
- Data Science Lifecycle
- Key Roles (Data Scientist, Analyst, Engineer)
2. Mathematics and Statistics
- Probability and Distributions
- Descriptive/Inferential Statistics
- Hypothesis Testing
- Linear Algebra and Calculus Basics
3. Programming Languages
- Python: NumPy, Pandas, Matplotlib
- R: dplyr, ggplot2
- SQL: Joins, Aggregations, CRUD
4. Data Collection & Preprocessing
- Data Cleaning and Wrangling
- Handling Missing Data
- Feature Engineering
5. Exploratory Data Analysis (EDA)
- Summary Statistics
- Data Visualization (Histograms, Box Plots, Correlation)
6. Machine Learning
- Supervised (Linear/Logistic Regression, Decision Trees)
- Unsupervised (K-Means, PCA)
- Model Selection and Cross-Validation
7. Advanced Machine Learning
- SVM, Random Forests, Boosting
- Neural Networks Basics
8. Deep Learning
- Neural Networks Architecture
- CNNs for Image Data
- RNNs for Sequential Data
9. Natural Language Processing (NLP)
- Text Preprocessing
- Sentiment Analysis
- Word Embeddings (Word2Vec)
10. Data Visualization & Storytelling
- Dashboards (Tableau, Power BI)
- Telling Stories with Data
11. Model Deployment
- Deploy with Flask or Django
- Monitoring and Retraining Models
12. Big Data & Cloud
- Introduction to Hadoop, Spark
- Cloud Tools (AWS, Google Cloud)
13. Data Engineering Basics
- ETL Pipelines
- Data Warehousing (Redshift, BigQuery)
14. Ethics in Data Science
- Ethical Data Usage
- Bias in AI Models
15. Tools for Data Science
- Jupyter, Git, Docker
16. Career Path & Certifications
- Building a Data Science Portfolio
Like if you need similar content ๐๐
Free Notes & Books to learn Data Science: https://t.iss.one/datasciencefree
Python Project Ideas: https://t.iss.one/dsabooks/85
Best Resources to learn Data Science ๐๐
Python Tutorial
Data Science Course by Kaggle
Machine Learning Course by Google
Best Data Science & Machine Learning Resources
Interview Process for Data Science Role at Amazon
Python Interview Resources
Join @free4unow_backup for more free courses
Like for more โค๏ธ
ENJOY LEARNING๐๐
๐๐
1. Introduction to Data Science
- Overview and Importance
- Data Science Lifecycle
- Key Roles (Data Scientist, Analyst, Engineer)
2. Mathematics and Statistics
- Probability and Distributions
- Descriptive/Inferential Statistics
- Hypothesis Testing
- Linear Algebra and Calculus Basics
3. Programming Languages
- Python: NumPy, Pandas, Matplotlib
- R: dplyr, ggplot2
- SQL: Joins, Aggregations, CRUD
4. Data Collection & Preprocessing
- Data Cleaning and Wrangling
- Handling Missing Data
- Feature Engineering
5. Exploratory Data Analysis (EDA)
- Summary Statistics
- Data Visualization (Histograms, Box Plots, Correlation)
6. Machine Learning
- Supervised (Linear/Logistic Regression, Decision Trees)
- Unsupervised (K-Means, PCA)
- Model Selection and Cross-Validation
7. Advanced Machine Learning
- SVM, Random Forests, Boosting
- Neural Networks Basics
8. Deep Learning
- Neural Networks Architecture
- CNNs for Image Data
- RNNs for Sequential Data
9. Natural Language Processing (NLP)
- Text Preprocessing
- Sentiment Analysis
- Word Embeddings (Word2Vec)
10. Data Visualization & Storytelling
- Dashboards (Tableau, Power BI)
- Telling Stories with Data
11. Model Deployment
- Deploy with Flask or Django
- Monitoring and Retraining Models
12. Big Data & Cloud
- Introduction to Hadoop, Spark
- Cloud Tools (AWS, Google Cloud)
13. Data Engineering Basics
- ETL Pipelines
- Data Warehousing (Redshift, BigQuery)
14. Ethics in Data Science
- Ethical Data Usage
- Bias in AI Models
15. Tools for Data Science
- Jupyter, Git, Docker
16. Career Path & Certifications
- Building a Data Science Portfolio
Like if you need similar content ๐๐
Free Notes & Books to learn Data Science: https://t.iss.one/datasciencefree
Python Project Ideas: https://t.iss.one/dsabooks/85
Best Resources to learn Data Science ๐๐
Python Tutorial
Data Science Course by Kaggle
Machine Learning Course by Google
Best Data Science & Machine Learning Resources
Interview Process for Data Science Role at Amazon
Python Interview Resources
Join @free4unow_backup for more free courses
Like for more โค๏ธ
ENJOY LEARNING๐๐
โค7๐1๐ฅ1
Few ways to optimise SQL Queries ๐๐
Use Indexing: Properly indexing your database tables can significantly speed up query performance by allowing the database to quickly locate the rows needed for a query.
Optimize Joins: Minimize the number of joins and use appropriate join types (e.g., INNER JOIN, LEFT JOIN) to ensure efficient data retrieval.
Avoid SELECT * : Instead of selecting all columns using SELECT *, explicitly specify only the columns needed for the query to reduce unnecessary data transfer and processing overhead.
Use WHERE Clause Wisely: Filter rows early in the query using WHERE clause to reduce the dataset size before joining or aggregating data.
Avoid Subqueries: Whenever possible, rewrite subqueries as JOINs or use Common Table Expressions (CTEs) for better performance.
Limit the Use of DISTINCT: Minimize the use of DISTINCT as it requires sorting and duplicate removal, which can be resource-intensive for large datasets.
Optimize GROUP BY and ORDER BY: Use GROUP BY and ORDER BY clauses judiciously, and ensure that they are using indexed columns whenever possible to avoid unnecessary sorting.
Consider Partitioning: Partition large tables to distribute data across multiple nodes, which can improve query performance by reducing I/O operations.
Monitor Query Performance: Regularly monitor query performance using tools like query execution plans, database profiler, and performance monitoring tools to identify and address bottlenecks.
Hope it helps :)
Use Indexing: Properly indexing your database tables can significantly speed up query performance by allowing the database to quickly locate the rows needed for a query.
Optimize Joins: Minimize the number of joins and use appropriate join types (e.g., INNER JOIN, LEFT JOIN) to ensure efficient data retrieval.
Avoid SELECT * : Instead of selecting all columns using SELECT *, explicitly specify only the columns needed for the query to reduce unnecessary data transfer and processing overhead.
Use WHERE Clause Wisely: Filter rows early in the query using WHERE clause to reduce the dataset size before joining or aggregating data.
Avoid Subqueries: Whenever possible, rewrite subqueries as JOINs or use Common Table Expressions (CTEs) for better performance.
Limit the Use of DISTINCT: Minimize the use of DISTINCT as it requires sorting and duplicate removal, which can be resource-intensive for large datasets.
Optimize GROUP BY and ORDER BY: Use GROUP BY and ORDER BY clauses judiciously, and ensure that they are using indexed columns whenever possible to avoid unnecessary sorting.
Consider Partitioning: Partition large tables to distribute data across multiple nodes, which can improve query performance by reducing I/O operations.
Monitor Query Performance: Regularly monitor query performance using tools like query execution plans, database profiler, and performance monitoring tools to identify and address bottlenecks.
Hope it helps :)
โค5๐4