Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence
37.4K subscribers
283 photos
76 files
336 links
Free Datasets For Data Science Projects & Portfolio

Buy ads: https://telega.io/c/DataPortfolio

For Promotions/ads: @coderfun @love_data
Download Telegram
๐Ÿ”…SQL Revision Notes for Interview๐Ÿ’ก
โค4
7 High-Impact Portfolio Project Ideas for Aspiring Data Analysts

โœ… Sales Dashboard โ€“ Use Power BI or Tableau to visualize KPIs like revenue, profit, and region-wise performance
โœ… Customer Churn Analysis โ€“ Predict which customers are likely to leave using Python (Logistic Regression, EDA)
โœ… Netflix Dataset Exploration โ€“ Analyze trends in content types, genres, and release years with Pandas & Matplotlib
โœ… HR Analytics Dashboard โ€“ Visualize attrition, department strength, and performance reviews
โœ… Survey Data Analysis โ€“ Clean, visualize, and derive insights from user feedback or product surveys
โœ… E-commerce Product Analysis โ€“ Analyze top-selling products, revenue by category, and return rates
โœ… Airbnb Price Predictor โ€“ Use machine learning to predict listing prices based on location, amenities, and ratings

These projects showcase real-world skills and storytelling with data.

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค3
Beginnerโ€™s Roadmap to Learn Data Structures & Algorithms

1. Foundations: Start with the basics of programming and mathematical concepts to build a strong foundation.

2. Data Structure: Dive into essential data structures like arrays, linked lists, stacks, and queues to organise and store data efficiently.

3. Searching & Sorting: Learn various search and sort techniques to optimise data retrieval and organisation.

4. Trees & Graphs: Understand the concepts of binary trees and graph representation to tackle complex hierarchical data.

5. Recursion: Grasp the principles of recursion and how to implement recursive algorithms for problem-solving.

6. Advanced Data Structures: Explore advanced structures like hashing, heaps, and hash maps to enhance data manipulation.

7. Algorithms: Master algorithms such as greedy, divide and conquer, and dynamic programming to solve intricate problems.

8. Advanced Topics: Delve into backtracking, string algorithms, and bit manipulation for a deeper understanding.

9. Problem Solving: Practice on coding platforms like LeetCode to sharpen your skills and solve real-world algorithmic challenges.

10. Projects & Portfolio: Build real-world projects and showcase your skills on GitHub to create an impressive portfolio.

Best DSA RESOURCES: https://topmate.io/coding/886874

All the best ๐Ÿ‘๐Ÿ‘
โค3
๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—ฅ๐—ฒ๐—ด๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐—ผ๐—ป ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐—˜๐˜…๐—ฝ๐—น๐—ฎ๐—ถ๐—ป๐—ฒ๐—ฑ

๐—ช๐—ต๐—ฒ๐—ป ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐—ฎ ๐—ฟ๐—ฒ๐—ด๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐—ผ๐—ป ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น, ๐—ป๐—ผ๐˜ ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ฏ๐—น๐—ฒ ๐—ถ๐˜€ ๐—ฐ๐—ฟ๐—ฒ๐—ฎ๐˜๐—ฒ๐—ฑ ๐—ฒ๐—พ๐˜‚๐—ฎ๐—น.

Some variables will genuinely impact your predictions, while others are just background noise.

๐—ง๐—ต๐—ฒ ๐—ฝ-๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฒ ๐—ต๐—ฒ๐—น๐—ฝ๐˜€ ๐˜†๐—ผ๐˜‚ ๐—ณ๐—ถ๐—ด๐˜‚๐—ฟ๐—ฒ ๐—ผ๐˜‚๐˜ ๐˜„๐—ต๐—ถ๐—ฐ๐—ต ๐—ถ๐˜€ ๐˜„๐—ต๐—ถ๐—ฐ๐—ต.

๐—ช๐—ต๐—ฎ๐˜ ๐—ฒ๐˜…๐—ฎ๐—ฐ๐˜๐—น๐˜† ๐—ถ๐˜€ ๐—ฎ ๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ?

๐—” ๐—ฝ-๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฒ ๐—ฎ๐—ป๐˜€๐˜„๐—ฒ๐—ฟ๐˜€ ๐—ผ๐—ป๐—ฒ ๐—พ๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป:
โž” If this variable had no real effect, whatโ€™s the probability that weโ€™d still observe results this extreme just by chance?

โ€ข ๐—Ÿ๐—ผ๐˜„ ๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ (๐˜‚๐˜€๐˜‚๐—ฎ๐—น๐—น๐˜† < 0.05): Strong evidence that the variable is important.
โ€ข ๐—›๐—ถ๐—ด๐—ต ๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ (> 0.05): The variableโ€™s relationship with the output could easily be random.

๐—›๐—ผ๐˜„ ๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ๐˜€ ๐—š๐˜‚๐—ถ๐—ฑ๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐—ด๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐—ผ๐—ป ๐— ๐—ผ๐—ฑ๐—ฒ๐—น

๐—œ๐—บ๐—ฎ๐—ด๐—ถ๐—ป๐—ฒ ๐˜†๐—ผ๐˜‚โ€™๐—ฟ๐—ฒ ๐—ฎ ๐˜€๐—ฐ๐˜‚๐—น๐—ฝ๐˜๐—ผ๐—ฟ.
You start with a messy block of stone (all your features).
P-values are your chisel.
๐—ฅ๐—ฒ๐—บ๐—ผ๐˜ƒ๐—ฒ the features with high p-values (not useful).
๐—ž๐—ฒ๐—ฒ๐—ฝ the features with low p-values (important).

This results in a leaner, smarter model that doesnโ€™t just memorize noise but learns real patterns.

๐—ช๐—ต๐˜† ๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ๐˜€ ๐— ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ

๐—ช๐—ถ๐˜๐—ต๐—ผ๐˜‚๐˜ ๐—ฝ-๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฒ๐˜€, ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐—ฏ๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ๐˜€ ๐—ด๐˜‚๐—ฒ๐˜€๐˜€๐˜„๐—ผ๐—ฟ๐—ธ.

โœ… ๐—Ÿ๐—ผ๐˜„ ๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ โž” Likely genuine effect.
โŒ ๐—›๐—ถ๐—ด๐—ต ๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ โž” Likely coincidence.

๐—œ๐—ณ ๐˜†๐—ผ๐˜‚ ๐—ถ๐—ด๐—ป๐—ผ๐—ฟ๐—ฒ ๐—ถ๐˜, ๐˜†๐—ผ๐˜‚ ๐—ฟ๐—ถ๐˜€๐—ธ:
โ€ข Overfitting your model with junk features
โ€ข Lowering your modelโ€™s accuracy and interpretability
โ€ข Making wrong business decisions based on faulty insights

๐—ง๐—ต๐—ฒ ๐Ÿฌ.๐Ÿฌ๐Ÿฑ ๐—ง๐—ต๐—ฟ๐—ฒ๐˜€๐—ต๐—ผ๐—น๐—ฑ: ๐—ก๐—ผ๐˜ ๐—” ๐— ๐—ฎ๐—ด๐—ถ๐—ฐ ๐—ก๐˜‚๐—บ๐—ฏ๐—ฒ๐—ฟ

Youโ€™ll often hear: If p < 0.05, itโ€™s significant!

๐—•๐˜‚๐˜ ๐—ฏ๐—ฒ ๐—ฐ๐—ฎ๐—ฟ๐—ฒ๐—ณ๐˜‚๐—น.
This threshold is not universal.
โ€ข In critical fields (like medicine), you might need a much lower p-value (e.g., 0.01).
โ€ข In exploratory analysis, you might tolerate higher p-values.

Context always matters.

๐—ฅ๐—ฒ๐—ฎ๐—น-๐—ช๐—ผ๐—ฟ๐—น๐—ฑ ๐—”๐—ฑ๐˜ƒ๐—ถ๐—ฐ๐—ฒ

When evaluating your regression model:
โž” ๐——๐—ผ๐—ปโ€™๐˜ ๐—ท๐˜‚๐˜€๐˜ ๐—น๐—ผ๐—ผ๐—ธ ๐—ฎ๐˜ ๐—ฝ-๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฒ๐˜€ ๐—ฎ๐—น๐—ผ๐—ป๐—ฒ.

๐—–๐—ผ๐—ป๐˜€๐—ถ๐—ฑ๐—ฒ๐—ฟ:
โ€ข The featureโ€™s practical importance (not just statistical)
โ€ข Multicollinearity (highly correlated variables can distort p-values)
โ€ข Overall model fit (Rยฒ, Adjusted Rยฒ)

๐—œ๐—ป ๐—ฆ๐—ต๐—ผ๐—ฟ๐˜:

๐—Ÿ๐—ผ๐˜„ ๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ = ๐—ง๐—ต๐—ฒ ๐—ณ๐—ฒ๐—ฎ๐˜๐˜‚๐—ฟ๐—ฒ ๐—บ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐˜€.
๐—›๐—ถ๐—ด๐—ต ๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ = ๐—œ๐˜โ€™๐˜€ ๐—ฝ๐—ฟ๐—ผ๐—ฏ๐—ฎ๐—ฏ๐—น๐˜† ๐—ท๐˜‚๐˜€๐˜ ๐—ป๐—ผ๐—ถ๐˜€๐—ฒ.
โค4
SQL Joins Explanation โ™ฅ๏ธ
โค2๐Ÿ‘1
Best way to prepare for Python interviews ๐Ÿ‘‡๐Ÿ‘‡

1. Fundamentals: Strengthen your understanding of Python basics, including data types, control structures, functions, and object-oriented programming concepts.

2. Data Structures and Algorithms: Familiarize yourself with common data structures (lists, dictionaries, sets, etc.) and algorithms. Practice solving coding problems on platforms like LeetCode or HackerRank.

3. Problem Solving: Develop problem-solving skills by working on real-world scenarios. Understand how to approach and solve problems efficiently using Python.

4. Libraries and Frameworks: Be well-versed in popular Python libraries and frameworks relevant to the job, such as NumPy, Pandas, Flask, or Django. Demonstrate your ability to apply these tools in practical situations.

5. Web Development (if applicable): If the position involves web development, understand web frameworks like Flask or Django. Be ready to discuss your experience in building web applications using Python.

6. Database Knowledge: Have a solid understanding of working with databases in Python. Know how to interact with databases using SQLAlchemy or Django ORM.

7. Testing and Debugging: Showcase your proficiency in writing unit tests and debugging code. Understand testing frameworks like pytest and debugging tools available in Python.

8. Version Control: Familiarize yourself with version control systems, particularly Git, and demonstrate your ability to collaborate on projects using Git.

9. Projects: Showcase relevant projects in your portfolio. Discuss the challenges you faced, solutions you implemented, and the impact of your work.

10. Soft Skills: Highlight your communication and collaboration skills. Be ready to explain your thought process and decision-making during technical discussions.

Best Resource to learn Python

Python Interview Questions with Answers

Freecodecamp Python Course with FREE Certificate

Python for Data Analysis and Visualization

Python course for beginners by Microsoft

Python course by Google

Please give us credits while sharing: -> https://t.iss.one/free4unow_backup

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค2๐Ÿ‘1
๐Ÿ”ฐ Data Science Roadmap for Beginners 2025
โ”œโ”€โ”€ ๐Ÿ“˜ What is Data Science?
โ”œโ”€โ”€ ๐Ÿง  Data Science vs Data Analytics vs Machine Learning
โ”œโ”€โ”€ ๐Ÿ›  Tools of the Trade (Python, R, Excel, SQL)
โ”œโ”€โ”€ ๐Ÿ Python for Data Science (NumPy, Pandas, Matplotlib)
โ”œโ”€โ”€ ๐Ÿ”ข Statistics & Probability Basics
โ”œโ”€โ”€ ๐Ÿ“Š Data Visualization (Matplotlib, Seaborn, Plotly)
โ”œโ”€โ”€ ๐Ÿงผ Data Cleaning & Preprocessing
โ”œโ”€โ”€ ๐Ÿงฎ Exploratory Data Analysis (EDA)
โ”œโ”€โ”€ ๐Ÿง  Introduction to Machine Learning
โ”œโ”€โ”€ ๐Ÿ“ฆ Supervised vs Unsupervised Learning
โ”œโ”€โ”€ ๐Ÿค– Popular ML Algorithms (Linear Reg, KNN, Decision Trees)
โ”œโ”€โ”€ ๐Ÿงช Model Evaluation (Accuracy, Precision, Recall, F1 Score)
โ”œโ”€โ”€ ๐Ÿงฐ Model Tuning (Cross Validation, Grid Search)
โ”œโ”€โ”€ โš™๏ธ Feature Engineering
โ”œโ”€โ”€ ๐Ÿ— Real-world Projects (Kaggle, UCI Datasets)
โ”œโ”€โ”€ ๐Ÿ“ˆ Basic Deployment (Streamlit, Flask, Heroku)
โ”œโ”€โ”€ ๐Ÿ” Continuous Learning: Blogs, Research Papers, Competitions

Free Resources: https://t.iss.one/datalemur

Like for more โค๏ธ
โค5
๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐˜ƒ๐˜€ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜ ๐˜ƒ๐˜€ ๐—•๐˜‚๐˜€๐—ถ๐—ป๐—ฒ๐˜€๐˜€ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ โ€” ๐—ช๐—ต๐—ถ๐—ฐ๐—ต ๐—ฃ๐—ฎ๐˜๐—ต ๐—ถ๐˜€ ๐—ฅ๐—ถ๐—ด๐—ต๐˜ ๐—ณ๐—ผ๐—ฟ ๐—ฌ๐—ผ๐˜‚? ๐Ÿค”

In todayโ€™s data-driven world, career clarity can make all the difference. Whether youโ€™re starting out in analytics, pivoting into data science, or aligning business with data as an analyst โ€” understanding the core responsibilities, skills, and tools of each role is crucial.

๐Ÿ” Hereโ€™s a quick breakdown from a visual I often refer to when mentoring professionals:

๐Ÿ”น ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜

๓ ฏโ€ข๓  Focus: Analyzing historical data to inform decisions.

๓ ฏโ€ข๓  Skills: SQL, basic stats, data visualization, reporting.

๓ ฏโ€ข๓  Tools: Excel, Tableau, Power BI, SQL.

๐Ÿ”น ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜

๓ ฏโ€ข๓  Focus: Predictive modeling, ML, complex data analysis.

๓ ฏโ€ข๓  Skills: Programming, ML, deep learning, stats.

๓ ฏโ€ข๓  Tools: Python, R, TensorFlow, Scikit-Learn, Spark.

๐Ÿ”น ๐—•๐˜‚๐˜€๐—ถ๐—ป๐—ฒ๐˜€๐˜€ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜

๓ ฏโ€ข๓  Focus: Bridging business needs with data insights.

๓ ฏโ€ข๓  Skills: Communication, stakeholder management, process modeling.

๓ ฏโ€ข๓  Tools: Microsoft Office, BI tools, business process frameworks.

๐Ÿ‘‰ ๐— ๐˜† ๐—”๐—ฑ๐˜ƒ๐—ถ๐—ฐ๐—ฒ:

Start with what interests you the most and aligns with your current strengths. Are you business-savvy? Start as a Business Analyst. Love solving puzzles with data?

Explore Data Analyst. Want to build models and uncover deep insights? Head into Data Science.

๐Ÿ”— ๐—ง๐—ฎ๐—ธ๐—ฒ ๐˜๐—ถ๐—บ๐—ฒ ๐˜๐—ผ ๐˜€๐—ฒ๐—น๐—ณ-๐—ฎ๐˜€๐˜€๐—ฒ๐˜€๐˜€ ๐—ฎ๐—ป๐—ฑ ๐—ฐ๐—ต๐—ผ๐—ผ๐˜€๐—ฒ ๐—ฎ ๐—ฝ๐—ฎ๐˜๐—ต ๐˜๐—ต๐—ฎ๐˜ ๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ด๐—ถ๐˜‡๐—ฒ๐˜€ ๐˜†๐—ผ๐˜‚, not just one thatโ€™s trending.
โค6