Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence
37.4K subscribers
283 photos
76 files
336 links
Free Datasets For Data Science Projects & Portfolio

Buy ads: https://telega.io/c/DataPortfolio

For Promotions/ads: @coderfun @love_data
Download Telegram
πŸ” Machine Learning Cheat Sheet πŸ”

1. Key Concepts:
- Supervised Learning: Learn from labeled data (e.g., classification, regression).
- Unsupervised Learning: Discover patterns in unlabeled data (e.g., clustering, dimensionality reduction).
- Reinforcement Learning: Learn by interacting with an environment to maximize reward.

2. Common Algorithms:
- Linear Regression: Predict continuous values.
- Logistic Regression: Binary classification.
- Decision Trees: Simple, interpretable model for classification and regression.
- Random Forests: Ensemble method for improved accuracy.
- Support Vector Machines: Effective for high-dimensional spaces.
- K-Nearest Neighbors: Instance-based learning for classification/regression.
- K-Means: Clustering algorithm.
- Principal Component Analysis(PCA)

3. Performance Metrics:
- Classification: Accuracy, Precision, Recall, F1-Score, ROC-AUC.
- Regression: Mean Absolute Error (MAE), Mean Squared Error (MSE), R^2 Score.

4. Data Preprocessing:
- Normalization: Scale features to a standard range.
- Standardization: Transform features to have zero mean and unit variance.
- Imputation: Handle missing data.
- Encoding: Convert categorical data into numerical format.

5. Model Evaluation:
- Cross-Validation: Ensure model generalization.
- Train-Test Split: Divide data to evaluate model performance.

6. Libraries:
- Python: Scikit-Learn, TensorFlow, Keras, PyTorch, Pandas, Numpy, Matplotlib.
- R: caret, randomForest, e1071, ggplot2.

7. Tips for Success:
- Feature Engineering: Enhance data quality and relevance.
- Hyperparameter Tuning: Optimize model parameters (Grid Search, Random Search).
- Model Interpretability: Use tools like SHAP and LIME.
- Continuous Learning: Stay updated with the latest research and trends.

πŸš€ Dive into Machine Learning and transform data into insights! πŸš€

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

All the best πŸ‘πŸ‘
❀3
Important data science topics you should definitely be aware of

1. Statistics & Probability

Descriptive Statistics (mean, median, mode, variance, std deviation)
Probability Distributions (Normal, Binomial, Poisson)
Bayes' Theorem
Hypothesis Testing (t-test, chi-square test, ANOVA)
Confidence Intervals

2. Data Manipulation & Analysis

Data wrangling/cleaning
Handling missing values & outliers
Feature engineering & scaling
GroupBy operations
Pivot tables
Time series manipulation

3. Programming (Python/R)

Data structures (lists, dictionaries, sets)
Libraries:
Python: pandas, NumPy, matplotlib, seaborn, scikit-learn
R: dplyr, ggplot2, caret
Writing reusable functions
Working with APIs & files (CSV, JSON, Excel)

4. Data Visualization
Plot types: bar, line, scatter, histograms, heatmaps, boxplots
Dashboards (Power BI, Tableau, Plotly Dash, Streamlit)
Communicating insights clearly

5. Machine Learning

Supervised Learning
Linear & Logistic Regression
Decision Trees, Random Forest, Gradient Boosting (XGBoost, LightGBM)
SVM, KNN

Unsupervised Learning
K-means Clustering
PCA
Hierarchical Clustering

Model Evaluation
Accuracy, Precision, Recall, F1-Score
Confusion Matrix, ROC-AUC
Cross-validation, Grid Search

6. Deep Learning (Basics)
Neural Networks (perceptron, activation functions)
CNNs, RNNs (just an overview unless you're going deep into DL)
Frameworks: TensorFlow, PyTorch, Keras

7. SQL & Databases
SELECT, WHERE, GROUP BY, JOINS, CTEs, Subqueries
Window functions
Indexes and Query Optimization

8. Big Data & Cloud (Basics)
Hadoop, Spark
AWS, GCP, Azure (basic knowledge of data services)

9. Deployment & MLOps (Basic Awareness)
Model deployment (Flask, FastAPI)
Docker basics
CI/CD pipelines
Model monitoring

10. Business & Domain Knowledge
Framing a problem
Understanding business KPIs
Translating data insights into actionable strategies

I have curated the best interview resources to crack Data Science Interviews
πŸ‘‡πŸ‘‡
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like for the detailed explanation on each topic πŸ˜„πŸ‘
❀2
Step-by-Step Roadmap to Learn Data Science in 2025:

Step 1: Understand the Role
A data scientist in 2025 is expected to:

Analyze data to extract insights

Build predictive models using ML

Communicate findings to stakeholders

Work with large datasets in cloud environments


Step 2: Master the Prerequisite Skills

A. Programming

Learn Python (must-have): Focus on pandas, numpy, matplotlib, seaborn, scikit-learn

R (optional but helpful for statistical analysis)

SQL: Strong command over data extraction and transformation


B. Math & Stats

Probability, Descriptive & Inferential Statistics

Linear Algebra & Calculus (only what's necessary for ML)

Hypothesis testing


Step 3: Learn Data Handling

Data Cleaning, Preprocessing

Exploratory Data Analysis (EDA)

Feature Engineering

Tools: Python (pandas), Excel, SQL


Step 4: Master Machine Learning

Supervised Learning: Linear/Logistic Regression, Decision Trees, Random Forests, XGBoost

Unsupervised Learning: K-Means, Hierarchical Clustering, PCA

Deep Learning (optional): Use TensorFlow or PyTorch

Evaluation Metrics: Accuracy, AUC, Confusion Matrix, RMSE


Step 5: Learn Data Visualization & Storytelling

Python (matplotlib, seaborn, plotly)

Power BI / Tableau

Communicating insights clearly is as important as modeling


Step 6: Use Real Datasets & Projects

Work on projects using Kaggle, UCI, or public APIs

Examples:

Customer churn prediction

Sales forecasting

Sentiment analysis

Fraud detection



Step 7: Understand Cloud & MLOps (2025+ Skills)

Cloud: AWS (S3, EC2, SageMaker), GCP, or Azure

MLOps: Model deployment (Flask, FastAPI), CI/CD for ML, Docker basics


Step 8: Build Portfolio & Resume

Create GitHub repos with well-documented code

Post projects and blogs on Medium or LinkedIn

Prepare a data science-specific resume


Step 9: Apply Smartly

Focus on job roles like: Data Scientist, ML Engineer, Data Analyst β†’ DS

Use platforms like LinkedIn, Glassdoor, Hirect, AngelList, etc.

Practice data science interviews: case studies, ML concepts, SQL + Python coding


Step 10: Keep Learning & Updating

Follow top newsletters: Data Elixir, Towards Data Science

Read papers (arXiv, Google Scholar) on trending topics: LLMs, AutoML, Explainable AI

Upskill with certifications (Google Data Cert, Coursera, DataCamp, Udemy)

Free Resources to learn Data Science

Kaggle Courses: https://www.kaggle.com/learn

CS50 AI by Harvard: https://cs50.harvard.edu/ai/

Fast.ai: https://course.fast.ai/

Google ML Crash Course: https://developers.google.com/machine-learning/crash-course

Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998

Data Science Books: https://t.iss.one/datalemur

React ❀️ for more
❀2
πŸ”…SQL Revision Notes for InterviewπŸ’‘
❀4
7 High-Impact Portfolio Project Ideas for Aspiring Data Analysts

βœ… Sales Dashboard – Use Power BI or Tableau to visualize KPIs like revenue, profit, and region-wise performance
βœ… Customer Churn Analysis – Predict which customers are likely to leave using Python (Logistic Regression, EDA)
βœ… Netflix Dataset Exploration – Analyze trends in content types, genres, and release years with Pandas & Matplotlib
βœ… HR Analytics Dashboard – Visualize attrition, department strength, and performance reviews
βœ… Survey Data Analysis – Clean, visualize, and derive insights from user feedback or product surveys
βœ… E-commerce Product Analysis – Analyze top-selling products, revenue by category, and return rates
βœ… Airbnb Price Predictor – Use machine learning to predict listing prices based on location, amenities, and ratings

These projects showcase real-world skills and storytelling with data.

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
❀3