FREE RESOURCES TO LEARN DATA ENGINEERING
๐๐
Big Data and Hadoop Essentials free course
https://bit.ly/3rLxbul
Data Engineer: Prepare Financial Data for ML and Backtesting FREE UDEMY COURSE
[4.6 stars out of 5]
https://bit.ly/3fGRjLu
Understanding Data Engineering from Datacamp
https://clnk.in/soLY
Data Engineering Free Books
https://ia600201.us.archive.org/4/items/springer_10.1007-978-1-4419-0176-7/10.1007-978-1-4419-0176-7.pdf
https://www.darwinpricing.com/training/Data_Engineering_Cookbook.pdf
Big Data of Data Engineering Free book
https://databricks.com/wp-content/uploads/2021/10/Big-Book-of-Data-Engineering-Final.pdf
https://aimlcommunity.com/wp-content/uploads/2019/09/Data-Engineering.pdf
The Data Engineerโs Guide to Apache Spark
https://t.iss.one/datasciencefun/783?single
Data Engineering with Python
https://t.iss.one/pythondevelopersindia/343
Data Engineering Projects -
1.End-To-End From Web Scraping to Tableau https://lnkd.in/ePMw63ge
2. Building Data Model and Writing ETL Job https://lnkd.in/eq-e3_3J
3. Data Modeling and Analysis using Semantic Web Technologies https://lnkd.in/e4A86Ypq
4. ETL Project in Azure Data Factory - https://lnkd.in/eP8huQW3
5. ETL Pipeline on AWS Cloud - https://lnkd.in/ebgNtNRR
6. Covid Data Analysis Project - https://lnkd.in/eWZ3JfKD
7. YouTube Data Analysis
(End-To-End Data Engineering Project) - https://lnkd.in/eYJTEKwF
8. Twitter Data Pipeline using Airflow - https://lnkd.in/eNxHHZbY
9. Sentiment analysis Twitter:
Kafka and Spark Structured Streaming - https://lnkd.in/esVAaqtU
ENJOY LEARNING ๐๐
๐๐
Big Data and Hadoop Essentials free course
https://bit.ly/3rLxbul
Data Engineer: Prepare Financial Data for ML and Backtesting FREE UDEMY COURSE
[4.6 stars out of 5]
https://bit.ly/3fGRjLu
Understanding Data Engineering from Datacamp
https://clnk.in/soLY
Data Engineering Free Books
https://ia600201.us.archive.org/4/items/springer_10.1007-978-1-4419-0176-7/10.1007-978-1-4419-0176-7.pdf
https://www.darwinpricing.com/training/Data_Engineering_Cookbook.pdf
Big Data of Data Engineering Free book
https://databricks.com/wp-content/uploads/2021/10/Big-Book-of-Data-Engineering-Final.pdf
https://aimlcommunity.com/wp-content/uploads/2019/09/Data-Engineering.pdf
The Data Engineerโs Guide to Apache Spark
https://t.iss.one/datasciencefun/783?single
Data Engineering with Python
https://t.iss.one/pythondevelopersindia/343
Data Engineering Projects -
1.End-To-End From Web Scraping to Tableau https://lnkd.in/ePMw63ge
2. Building Data Model and Writing ETL Job https://lnkd.in/eq-e3_3J
3. Data Modeling and Analysis using Semantic Web Technologies https://lnkd.in/e4A86Ypq
4. ETL Project in Azure Data Factory - https://lnkd.in/eP8huQW3
5. ETL Pipeline on AWS Cloud - https://lnkd.in/ebgNtNRR
6. Covid Data Analysis Project - https://lnkd.in/eWZ3JfKD
7. YouTube Data Analysis
(End-To-End Data Engineering Project) - https://lnkd.in/eYJTEKwF
8. Twitter Data Pipeline using Airflow - https://lnkd.in/eNxHHZbY
9. Sentiment analysis Twitter:
Kafka and Spark Structured Streaming - https://lnkd.in/esVAaqtU
ENJOY LEARNING ๐๐
โค2
Roadmap to become a Data Scientist:
๐ Learn Python & R
โ๐ Learn Statistics & Probability
โ๐ Learn SQL & Data Handling
โ๐ Learn Data Cleaning & Preprocessing
โ๐ Learn Data Visualization (Matplotlib, Seaborn, Power BI/Tableau)
โ๐ Learn Machine Learning (Supervised, Unsupervised)
โ๐ Learn Deep Learning (Neural Nets, CNNs, RNNs)
โ๐ Learn Model Deployment (Flask, Streamlit, FastAPI)
โ๐ Build Real-world Projects & Case Studies
โโ Apply for Jobs & Internships
React โค๏ธ for more
Free Data Science Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
๐ Learn Python & R
โ๐ Learn Statistics & Probability
โ๐ Learn SQL & Data Handling
โ๐ Learn Data Cleaning & Preprocessing
โ๐ Learn Data Visualization (Matplotlib, Seaborn, Power BI/Tableau)
โ๐ Learn Machine Learning (Supervised, Unsupervised)
โ๐ Learn Deep Learning (Neural Nets, CNNs, RNNs)
โ๐ Learn Model Deployment (Flask, Streamlit, FastAPI)
โ๐ Build Real-world Projects & Case Studies
โโ Apply for Jobs & Internships
React โค๏ธ for more
Free Data Science Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
โค2
Advice for those starting now
I hear so many people say they want to break into data analytics, yet they blindly copy what everyone else is doing instead of using the fundamentals and building their unique approach.
80% of the game is how you position yourself and who you connect with.
Spend more time:
- Solving real-life data problems (especially the ones you have).
- Showcasing those projects in a way that impresses recruiters (GitHub is not the one-size-fits all solution). There are other platforms where you can incorporate storytelling into your projects.
- Connect with like-minded people - Don't use AI for this.
I have curated top-notch Data Analytics Resources ๐๐
https://t.iss.one/DataSimplifier
Hope this helps you ๐
I hear so many people say they want to break into data analytics, yet they blindly copy what everyone else is doing instead of using the fundamentals and building their unique approach.
80% of the game is how you position yourself and who you connect with.
Spend more time:
- Solving real-life data problems (especially the ones you have).
- Showcasing those projects in a way that impresses recruiters (GitHub is not the one-size-fits all solution). There are other platforms where you can incorporate storytelling into your projects.
- Connect with like-minded people - Don't use AI for this.
I have curated top-notch Data Analytics Resources ๐๐
https://t.iss.one/DataSimplifier
Hope this helps you ๐
โค2
Top 5 data science projects for freshers
1. Predictive Analytics on a Dataset:
- Use a dataset to predict future trends or outcomes using machine learning algorithms. This could involve predicting sales, stock prices, or any other relevant domain.
2. Customer Segmentation:
- Analyze and segment customers based on their behavior, preferences, or demographics. This project could provide insights for targeted marketing strategies.
3. Sentiment Analysis on Social Media Data:
- Analyze sentiment in social media data to understand public opinion on a particular topic. This project helps in mastering natural language processing (NLP) techniques.
4. Recommendation System:
- Build a recommendation system, perhaps for movies, music, or products, using collaborative filtering or content-based filtering methods.
5. Fraud Detection:
- Develop a fraud detection system using machine learning algorithms to identify anomalous patterns in financial transactions or any domain where fraud detection is crucial.
Free Datsets -> https://t.iss.one/DataPortfolio/2?single
These projects showcase practical application of data science skills and can be highlighted on a resume for entry-level positions.
Join @pythonspecialist for more data science projects
1. Predictive Analytics on a Dataset:
- Use a dataset to predict future trends or outcomes using machine learning algorithms. This could involve predicting sales, stock prices, or any other relevant domain.
2. Customer Segmentation:
- Analyze and segment customers based on their behavior, preferences, or demographics. This project could provide insights for targeted marketing strategies.
3. Sentiment Analysis on Social Media Data:
- Analyze sentiment in social media data to understand public opinion on a particular topic. This project helps in mastering natural language processing (NLP) techniques.
4. Recommendation System:
- Build a recommendation system, perhaps for movies, music, or products, using collaborative filtering or content-based filtering methods.
5. Fraud Detection:
- Develop a fraud detection system using machine learning algorithms to identify anomalous patterns in financial transactions or any domain where fraud detection is crucial.
Free Datsets -> https://t.iss.one/DataPortfolio/2?single
These projects showcase practical application of data science skills and can be highlighted on a resume for entry-level positions.
Join @pythonspecialist for more data science projects
โค2
List of AI Project Ideas ๐จ๐ปโ๐ป๐ค -
Beginner Projects
๐น Sentiment Analyzer
๐น Image Classifier
๐น Spam Detection System
๐น Face Detection
๐น Chatbot (Rule-based)
๐น Movie Recommendation System
๐น Handwritten Digit Recognition
๐น Speech-to-Text Converter
๐น AI-Powered Calculator
๐น AI Hangman Game
Intermediate Projects
๐ธ AI Virtual Assistant
๐ธ Fake News Detector
๐ธ Music Genre Classification
๐ธ AI Resume Screener
๐ธ Style Transfer App
๐ธ Real-Time Object Detection
๐ธ Chatbot with Memory
๐ธ Autocorrect Tool
๐ธ Face Recognition Attendance System
๐ธ AI Sudoku Solver
Advanced Projects
๐บ AI Stock Predictor
๐บ AI Writer (GPT-based)
๐บ AI-powered Resume Builder
๐บ Deepfake Generator
๐บ AI Lawyer Assistant
๐บ AI-Powered Medical Diagnosis
๐บ AI-based Game Bot
๐บ Custom Voice Cloning
๐บ Multi-modal AI App
๐บ AI Research Paper Summarizer
Join for more: https://t.iss.one/machinelearning_deeplearning
Beginner Projects
๐น Sentiment Analyzer
๐น Image Classifier
๐น Spam Detection System
๐น Face Detection
๐น Chatbot (Rule-based)
๐น Movie Recommendation System
๐น Handwritten Digit Recognition
๐น Speech-to-Text Converter
๐น AI-Powered Calculator
๐น AI Hangman Game
Intermediate Projects
๐ธ AI Virtual Assistant
๐ธ Fake News Detector
๐ธ Music Genre Classification
๐ธ AI Resume Screener
๐ธ Style Transfer App
๐ธ Real-Time Object Detection
๐ธ Chatbot with Memory
๐ธ Autocorrect Tool
๐ธ Face Recognition Attendance System
๐ธ AI Sudoku Solver
Advanced Projects
๐บ AI Stock Predictor
๐บ AI Writer (GPT-based)
๐บ AI-powered Resume Builder
๐บ Deepfake Generator
๐บ AI Lawyer Assistant
๐บ AI-Powered Medical Diagnosis
๐บ AI-based Game Bot
๐บ Custom Voice Cloning
๐บ Multi-modal AI App
๐บ AI Research Paper Summarizer
Join for more: https://t.iss.one/machinelearning_deeplearning
Telegram
Artificial Intelligence
๐ฐ Machine Learning & Artificial Intelligence Free Resources
๐ฐ Learn Data Science, Deep Learning, Python with Tensorflow, Keras & many more
For Promotions: @love_data
๐ฐ Learn Data Science, Deep Learning, Python with Tensorflow, Keras & many more
For Promotions: @love_data
โค2
Data Analyst vs Data Scientist: Must-Know Differences
Data Analyst:
- Role: Primarily focuses on interpreting data, identifying trends, and creating reports that inform business decisions.
- Best For: Individuals who enjoy working with existing data to uncover insights and support decision-making in business processes.
- Key Responsibilities:
- Collecting, cleaning, and organizing data from various sources.
- Performing descriptive analytics to summarize the data (trends, patterns, anomalies).
- Creating reports and dashboards using tools like Excel, SQL, Power BI, and Tableau.
- Collaborating with business stakeholders to provide data-driven insights and recommendations.
- Skills Required:
- Proficiency in data visualization tools (e.g., Power BI, Tableau).
- Strong analytical and statistical skills, along with expertise in SQL and Excel.
- Familiarity with business intelligence and basic programming (optional).
- Outcome: Data analysts provide actionable insights to help companies make informed decisions by analyzing and visualizing data, often focusing on current and historical trends.
Data Scientist:
- Role: Combines statistical methods, machine learning, and programming to build predictive models and derive deeper insights from data.
- Best For: Individuals who enjoy working with complex datasets, developing algorithms, and using advanced analytics to solve business problems.
- Key Responsibilities:
- Designing and developing machine learning models for predictive analytics.
- Collecting, processing, and analyzing large datasets (structured and unstructured).
- Using statistical methods, algorithms, and data mining to uncover hidden patterns.
- Writing and maintaining code in programming languages like Python, R, and SQL.
- Working with big data technologies and cloud platforms for scalable solutions.
- Skills Required:
- Proficiency in programming languages like Python, R, and SQL.
- Strong understanding of machine learning algorithms, statistics, and data modeling.
- Experience with big data tools (e.g., Hadoop, Spark) and cloud platforms (AWS, Azure).
- Outcome: Data scientists develop models that predict future outcomes and drive innovation through advanced analytics, going beyond what has happened to explain why it happened and what will happen next.
Data analysts focus on analyzing and visualizing existing data to provide insights for current business challenges, while data scientists apply advanced algorithms and machine learning to predict future outcomes and derive deeper insights. Data scientists typically handle more complex problems and require a stronger background in statistics, programming, and machine learning.
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://t.iss.one/DataSimplifier
Like this post for more content like this ๐โฅ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
Data Analyst:
- Role: Primarily focuses on interpreting data, identifying trends, and creating reports that inform business decisions.
- Best For: Individuals who enjoy working with existing data to uncover insights and support decision-making in business processes.
- Key Responsibilities:
- Collecting, cleaning, and organizing data from various sources.
- Performing descriptive analytics to summarize the data (trends, patterns, anomalies).
- Creating reports and dashboards using tools like Excel, SQL, Power BI, and Tableau.
- Collaborating with business stakeholders to provide data-driven insights and recommendations.
- Skills Required:
- Proficiency in data visualization tools (e.g., Power BI, Tableau).
- Strong analytical and statistical skills, along with expertise in SQL and Excel.
- Familiarity with business intelligence and basic programming (optional).
- Outcome: Data analysts provide actionable insights to help companies make informed decisions by analyzing and visualizing data, often focusing on current and historical trends.
Data Scientist:
- Role: Combines statistical methods, machine learning, and programming to build predictive models and derive deeper insights from data.
- Best For: Individuals who enjoy working with complex datasets, developing algorithms, and using advanced analytics to solve business problems.
- Key Responsibilities:
- Designing and developing machine learning models for predictive analytics.
- Collecting, processing, and analyzing large datasets (structured and unstructured).
- Using statistical methods, algorithms, and data mining to uncover hidden patterns.
- Writing and maintaining code in programming languages like Python, R, and SQL.
- Working with big data technologies and cloud platforms for scalable solutions.
- Skills Required:
- Proficiency in programming languages like Python, R, and SQL.
- Strong understanding of machine learning algorithms, statistics, and data modeling.
- Experience with big data tools (e.g., Hadoop, Spark) and cloud platforms (AWS, Azure).
- Outcome: Data scientists develop models that predict future outcomes and drive innovation through advanced analytics, going beyond what has happened to explain why it happened and what will happen next.
Data analysts focus on analyzing and visualizing existing data to provide insights for current business challenges, while data scientists apply advanced algorithms and machine learning to predict future outcomes and derive deeper insights. Data scientists typically handle more complex problems and require a stronger background in statistics, programming, and machine learning.
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://t.iss.one/DataSimplifier
Like this post for more content like this ๐โฅ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค2
AI vs ML vs DL ๐๐
โค1
1.What are the conditions for Overfitting and Underfitting?
Ans:
โข In Overfitting the model performs well for the training data, but for any new data it fails to provide output. For Underfitting the model is very simple and not able to identify the correct relationship. Following are the bias and variance conditions.
โข Overfitting โ Low bias and High Variance results in the overfitted model. The decision tree is more prone to Overfitting.
โข Underfitting โ High bias and Low Variance. Such a model doesnโt perform well on test data also. For example โ Linear Regression is more prone to Underfitting.
2. Which models are more prone to Overfitting?
Ans: Complex models, like the Random Forest, Neural Networks, and XGBoost are more prone to overfitting. Simpler models, like linear regression, can overfit too โ this typically happens when there are more features than the number of instances in the training data.
3. When does feature scaling should be done?
Ans: We need to perform Feature Scaling when we are dealing with Gradient Descent Based algorithms (Linear and Logistic Regression, Neural Network) and Distance-based algorithms (KNN, K-means, SVM) as these are very sensitive to the range of the data points.
4. What is a logistic function? What is the range of values of a logistic function?
Ans. f(z) = 1/(1+e -z )
The values of a logistic function will range from 0 to 1. The values of Z will vary from -infinity to +infinity.
5. What are the drawbacks of a linear model?
Ans. There are a couple of drawbacks of a linear model:
A linear model holds some strong assumptions that may not be true in application. It assumes a linear relationship, multivariate normality, no or little multicollinearity, no auto-correlation, and homoscedasticity
A linear model canโt be used for discrete or binary outcomes.
You canโt vary the model flexibility of a linear model.
Ans:
โข In Overfitting the model performs well for the training data, but for any new data it fails to provide output. For Underfitting the model is very simple and not able to identify the correct relationship. Following are the bias and variance conditions.
โข Overfitting โ Low bias and High Variance results in the overfitted model. The decision tree is more prone to Overfitting.
โข Underfitting โ High bias and Low Variance. Such a model doesnโt perform well on test data also. For example โ Linear Regression is more prone to Underfitting.
2. Which models are more prone to Overfitting?
Ans: Complex models, like the Random Forest, Neural Networks, and XGBoost are more prone to overfitting. Simpler models, like linear regression, can overfit too โ this typically happens when there are more features than the number of instances in the training data.
3. When does feature scaling should be done?
Ans: We need to perform Feature Scaling when we are dealing with Gradient Descent Based algorithms (Linear and Logistic Regression, Neural Network) and Distance-based algorithms (KNN, K-means, SVM) as these are very sensitive to the range of the data points.
4. What is a logistic function? What is the range of values of a logistic function?
Ans. f(z) = 1/(1+e -z )
The values of a logistic function will range from 0 to 1. The values of Z will vary from -infinity to +infinity.
5. What are the drawbacks of a linear model?
Ans. There are a couple of drawbacks of a linear model:
A linear model holds some strong assumptions that may not be true in application. It assumes a linear relationship, multivariate normality, no or little multicollinearity, no auto-correlation, and homoscedasticity
A linear model canโt be used for discrete or binary outcomes.
You canโt vary the model flexibility of a linear model.
โค2
Excel Scenario-Based Questions Interview Questions and Answers :
Scenario 1) Imagine you have a dataset with missing values. How would you approach this problem in Excel?
Answer:
To handle missing values in Excel:
1. Identify Missing Data:
Use filters to quickly find blank cells.
Apply conditional formatting:
Home โ Conditional Formatting โ New Rule โ Format only cells that are blank.
2. Handle Missing Data:
Delete rows with missing critical data (if appropriate).
Fill missing values:
Use =IF(A2="", "N/A", A2) to replace blanks with โN/Aโ.
Use Fill Down (Ctrl + D) if the previous value applies.
Use functions like =AVERAGEIF(range, "<>", range) to fill with average.
3. Use Power Query (for large datasets):
Load data into Power Query and use โReplace Valuesโ or โRemove Emptyโ options.
Scenario 2) You are given a dataset with multiple sheets. How would you consolidate the data for analysis?
Answer:
Approach 1: Manual Consolidation
1. Use Copy-Paste from each sheet into a master sheet.
2. Add a new column to identify the source sheet (optional but useful).
3. Convert the master data into a table for analysis.
Approach 2: Use Power Query (Recommended for large datasets)
1. Go to Data โ Get & Transform โ Get Data โ From Workbook.
2. Load each sheet into Power Query.
3. Use the Append Queries option to merge all sheets.
4. Clean and transform as needed, then load it back to Excel.
Approach 3: Use VBA (Advanced Users)
Write a macro to loop through all sheets and append data to a master sheet.
Hope it helps :)
Scenario 1) Imagine you have a dataset with missing values. How would you approach this problem in Excel?
Answer:
To handle missing values in Excel:
1. Identify Missing Data:
Use filters to quickly find blank cells.
Apply conditional formatting:
Home โ Conditional Formatting โ New Rule โ Format only cells that are blank.
2. Handle Missing Data:
Delete rows with missing critical data (if appropriate).
Fill missing values:
Use =IF(A2="", "N/A", A2) to replace blanks with โN/Aโ.
Use Fill Down (Ctrl + D) if the previous value applies.
Use functions like =AVERAGEIF(range, "<>", range) to fill with average.
3. Use Power Query (for large datasets):
Load data into Power Query and use โReplace Valuesโ or โRemove Emptyโ options.
Scenario 2) You are given a dataset with multiple sheets. How would you consolidate the data for analysis?
Answer:
Approach 1: Manual Consolidation
1. Use Copy-Paste from each sheet into a master sheet.
2. Add a new column to identify the source sheet (optional but useful).
3. Convert the master data into a table for analysis.
Approach 2: Use Power Query (Recommended for large datasets)
1. Go to Data โ Get & Transform โ Get Data โ From Workbook.
2. Load each sheet into Power Query.
3. Use the Append Queries option to merge all sheets.
4. Clean and transform as needed, then load it back to Excel.
Approach 3: Use VBA (Advanced Users)
Write a macro to loop through all sheets and append data to a master sheet.
Hope it helps :)
โค2
If youโre a Data Analyst, chances are you use ๐๐๐ every single day. And if youโre preparing for interviews, youโve probably realized that it's not just about writing queries it's about writing smart, efficient, and scalable ones.
1. ๐๐ซ๐๐๐ค ๐๐ญ ๐๐จ๐ฐ๐ง ๐ฐ๐ข๐ญ๐ก ๐๐๐๐ฌ (๐๐จ๐ฆ๐ฆ๐จ๐ง ๐๐๐๐ฅ๐ ๐๐ฑ๐ฉ๐ซ๐๐ฌ๐ฌ๐ข๐จ๐ง๐ฌ)
Ever worked on a query that became an unreadable monster? CTEs let you break that down into logical steps. You can treat them like temporary views โ great for simplifying logic and improving collaboration across your team.
2. ๐๐ฌ๐ ๐๐ข๐ง๐๐จ๐ฐ ๐ ๐ฎ๐ง๐๐ญ๐ข๐จ๐ง๐ฌ
Forget the mess of subqueries. With functions like ROW_NUMBER(), RANK(), LEAD() and LAG(), you can compare rows, rank items, or calculate running totals โ all within the same query. Total
3. ๐๐ฎ๐๐ช๐ฎ๐๐ซ๐ข๐๐ฌ (๐๐๐ฌ๐ญ๐๐ ๐๐ฎ๐๐ซ๐ข๐๐ฌ)
Yes, they're old school, but nested subqueries are still powerful. Use them when you want to filter based on results of another query or isolate logic step-by-step before joining with the big picture.
4. ๐๐ง๐๐๐ฑ๐๐ฌ & ๐๐ฎ๐๐ซ๐ฒ ๐๐ฉ๐ญ๐ข๐ฆ๐ข๐ณ๐๐ญ๐ข๐จ๐ง
Query taking forever? Look at your indexes. Index the columns you use in JOINs, WHERE, and GROUP BY. Even basic knowledge of how the SQL engine reads data can take your skills up a notch.
5. ๐๐จ๐ข๐ง๐ฌ ๐ฏ๐ฌ. ๐๐ฎ๐๐ช๐ฎ๐๐ซ๐ข๐๐ฌ
Joins are usually faster and better for combining large datasets. Subqueries, on the other hand, are cleaner when doing one-off filters or smaller operations. Choose wisely based on the context.
6. ๐๐๐๐ ๐๐ญ๐๐ญ๐๐ฆ๐๐ง๐ญ๐ฌ:
Want to categorize or bucket data without creating a separate table? Use CASE. Itโs ideal for conditional logic, custom labels, and grouping in a single query.
7. ๐๐ ๐ ๐ซ๐๐ ๐๐ญ๐ข๐จ๐ง๐ฌ & ๐๐๐๐๐ ๐๐
Most analytics questions start with "how many", "whatโs the average", or "which is the highest?". SUM(), COUNT(), AVG(), etc., and pair them with GROUP BY to drive insights that matter.
8. ๐๐๐ญ๐๐ฌ ๐๐ซ๐ ๐๐ฅ๐ฐ๐๐ฒ๐ฌ ๐๐ซ๐ข๐๐ค๐ฒ
Time-based analysis is everywhere: trends, cohorts, seasonality, etc. Get familiar with functions like DATEADD, DATEDIFF, DATE_TRUNC, and DATEPART to work confidently with time series data.
9. ๐๐๐ฅ๐-๐๐จ๐ข๐ง๐ฌ & ๐๐๐๐ฎ๐ซ๐ฌ๐ข๐ฏ๐ ๐๐ฎ๐๐ซ๐ข๐๐ฌ ๐๐จ๐ซ ๐๐ข๐๐ซ๐๐ซ๐๐ก๐ข๐๐ฌ
Whether it's org charts or product categories, not all data is flat. Learn how to join a table to itself or use recursive CTEs to navigate parent-child relationships effectively.
You donโt need to memorize 100 functions. You need to understand 10 really well and apply them smartly. These are the concepts I keep going back to not just in interviews, but in the real world where clarity, performance, and logic matter most.
1. ๐๐ซ๐๐๐ค ๐๐ญ ๐๐จ๐ฐ๐ง ๐ฐ๐ข๐ญ๐ก ๐๐๐๐ฌ (๐๐จ๐ฆ๐ฆ๐จ๐ง ๐๐๐๐ฅ๐ ๐๐ฑ๐ฉ๐ซ๐๐ฌ๐ฌ๐ข๐จ๐ง๐ฌ)
Ever worked on a query that became an unreadable monster? CTEs let you break that down into logical steps. You can treat them like temporary views โ great for simplifying logic and improving collaboration across your team.
2. ๐๐ฌ๐ ๐๐ข๐ง๐๐จ๐ฐ ๐ ๐ฎ๐ง๐๐ญ๐ข๐จ๐ง๐ฌ
Forget the mess of subqueries. With functions like ROW_NUMBER(), RANK(), LEAD() and LAG(), you can compare rows, rank items, or calculate running totals โ all within the same query. Total
3. ๐๐ฎ๐๐ช๐ฎ๐๐ซ๐ข๐๐ฌ (๐๐๐ฌ๐ญ๐๐ ๐๐ฎ๐๐ซ๐ข๐๐ฌ)
Yes, they're old school, but nested subqueries are still powerful. Use them when you want to filter based on results of another query or isolate logic step-by-step before joining with the big picture.
4. ๐๐ง๐๐๐ฑ๐๐ฌ & ๐๐ฎ๐๐ซ๐ฒ ๐๐ฉ๐ญ๐ข๐ฆ๐ข๐ณ๐๐ญ๐ข๐จ๐ง
Query taking forever? Look at your indexes. Index the columns you use in JOINs, WHERE, and GROUP BY. Even basic knowledge of how the SQL engine reads data can take your skills up a notch.
5. ๐๐จ๐ข๐ง๐ฌ ๐ฏ๐ฌ. ๐๐ฎ๐๐ช๐ฎ๐๐ซ๐ข๐๐ฌ
Joins are usually faster and better for combining large datasets. Subqueries, on the other hand, are cleaner when doing one-off filters or smaller operations. Choose wisely based on the context.
6. ๐๐๐๐ ๐๐ญ๐๐ญ๐๐ฆ๐๐ง๐ญ๐ฌ:
Want to categorize or bucket data without creating a separate table? Use CASE. Itโs ideal for conditional logic, custom labels, and grouping in a single query.
7. ๐๐ ๐ ๐ซ๐๐ ๐๐ญ๐ข๐จ๐ง๐ฌ & ๐๐๐๐๐ ๐๐
Most analytics questions start with "how many", "whatโs the average", or "which is the highest?". SUM(), COUNT(), AVG(), etc., and pair them with GROUP BY to drive insights that matter.
8. ๐๐๐ญ๐๐ฌ ๐๐ซ๐ ๐๐ฅ๐ฐ๐๐ฒ๐ฌ ๐๐ซ๐ข๐๐ค๐ฒ
Time-based analysis is everywhere: trends, cohorts, seasonality, etc. Get familiar with functions like DATEADD, DATEDIFF, DATE_TRUNC, and DATEPART to work confidently with time series data.
9. ๐๐๐ฅ๐-๐๐จ๐ข๐ง๐ฌ & ๐๐๐๐ฎ๐ซ๐ฌ๐ข๐ฏ๐ ๐๐ฎ๐๐ซ๐ข๐๐ฌ ๐๐จ๐ซ ๐๐ข๐๐ซ๐๐ซ๐๐ก๐ข๐๐ฌ
Whether it's org charts or product categories, not all data is flat. Learn how to join a table to itself or use recursive CTEs to navigate parent-child relationships effectively.
You donโt need to memorize 100 functions. You need to understand 10 really well and apply them smartly. These are the concepts I keep going back to not just in interviews, but in the real world where clarity, performance, and logic matter most.
โค2
Machine Learning โ Essential Concepts ๐
1๏ธโฃ Types of Machine Learning
Supervised Learning โ Uses labeled data to train models.
Examples: Linear Regression, Decision Trees, Random Forest, SVM
Unsupervised Learning โ Identifies patterns in unlabeled data.
Examples: Clustering (K-Means, DBSCAN), PCA
Reinforcement Learning โ Models learn through rewards and penalties.
Examples: Q-Learning, Deep Q Networks
2๏ธโฃ Key Algorithms
Regression โ Predicts continuous values (Linear Regression, Ridge, Lasso).
Classification โ Categorizes data into classes (Logistic Regression, Decision Tree, SVM, Naรฏve Bayes).
Clustering โ Groups similar data points (K-Means, Hierarchical Clustering, DBSCAN).
Dimensionality Reduction โ Reduces the number of features (PCA, t-SNE, LDA).
3๏ธโฃ Model Training & Evaluation
Train-Test Split โ Dividing data into training and testing sets.
Cross-Validation โ Splitting data multiple times for better accuracy.
Metrics โ Evaluating models with RMSE, Accuracy, Precision, Recall, F1-Score, ROC-AUC.
4๏ธโฃ Feature Engineering
Handling missing data (mean imputation, dropna()).
Encoding categorical variables (One-Hot Encoding, Label Encoding).
Feature Scaling (Normalization, Standardization).
5๏ธโฃ Overfitting & Underfitting
Overfitting โ Model learns noise, performs well on training but poorly on test data.
Underfitting โ Model is too simple and fails to capture patterns.
Solution: Regularization (L1, L2), Hyperparameter Tuning.
6๏ธโฃ Ensemble Learning
Combining multiple models to improve performance.
Bagging (Random Forest)
Boosting (XGBoost, Gradient Boosting, AdaBoost)
7๏ธโฃ Deep Learning Basics
Neural Networks (ANN, CNN, RNN).
Activation Functions (ReLU, Sigmoid, Tanh).
Backpropagation & Gradient Descent.
8๏ธโฃ Model Deployment
Deploy models using Flask, FastAPI, or Streamlit.
Model versioning with MLflow.
Cloud deployment (AWS SageMaker, Google Vertex AI).
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
1๏ธโฃ Types of Machine Learning
Supervised Learning โ Uses labeled data to train models.
Examples: Linear Regression, Decision Trees, Random Forest, SVM
Unsupervised Learning โ Identifies patterns in unlabeled data.
Examples: Clustering (K-Means, DBSCAN), PCA
Reinforcement Learning โ Models learn through rewards and penalties.
Examples: Q-Learning, Deep Q Networks
2๏ธโฃ Key Algorithms
Regression โ Predicts continuous values (Linear Regression, Ridge, Lasso).
Classification โ Categorizes data into classes (Logistic Regression, Decision Tree, SVM, Naรฏve Bayes).
Clustering โ Groups similar data points (K-Means, Hierarchical Clustering, DBSCAN).
Dimensionality Reduction โ Reduces the number of features (PCA, t-SNE, LDA).
3๏ธโฃ Model Training & Evaluation
Train-Test Split โ Dividing data into training and testing sets.
Cross-Validation โ Splitting data multiple times for better accuracy.
Metrics โ Evaluating models with RMSE, Accuracy, Precision, Recall, F1-Score, ROC-AUC.
4๏ธโฃ Feature Engineering
Handling missing data (mean imputation, dropna()).
Encoding categorical variables (One-Hot Encoding, Label Encoding).
Feature Scaling (Normalization, Standardization).
5๏ธโฃ Overfitting & Underfitting
Overfitting โ Model learns noise, performs well on training but poorly on test data.
Underfitting โ Model is too simple and fails to capture patterns.
Solution: Regularization (L1, L2), Hyperparameter Tuning.
6๏ธโฃ Ensemble Learning
Combining multiple models to improve performance.
Bagging (Random Forest)
Boosting (XGBoost, Gradient Boosting, AdaBoost)
7๏ธโฃ Deep Learning Basics
Neural Networks (ANN, CNN, RNN).
Activation Functions (ReLU, Sigmoid, Tanh).
Backpropagation & Gradient Descent.
8๏ธโฃ Model Deployment
Deploy models using Flask, FastAPI, or Streamlit.
Model versioning with MLflow.
Cloud deployment (AWS SageMaker, Google Vertex AI).
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
โค4
๐ Data Analyst Project Ideas for Beginners
1. Sales Analysis Dashboard: Use tools like Excel or Tableau to create a dashboard analyzing sales data. Visualize trends, top products, and seasonal patterns.
2. Customer Segmentation: Analyze customer data using clustering techniques (like K-means) to segment customers based on purchasing behavior and demographics.
3. Social Media Metrics Analysis: Gather data from social media platforms to analyze engagement metrics. Create visualizations to highlight trends and performance.
4. Survey Data Analysis: Conduct a survey and analyze the results using statistical techniques. Present findings with visualizations to showcase insights.
5. Exploratory Data Analysis (EDA): Choose a public dataset and perform EDA using Python (Pandas, Matplotlib) or R (tidyverse). Summarize key insights and visualizations.
6. Employee Performance Analysis: Analyze employee performance data to identify trends in productivity, turnover rates, and training effectiveness.
7. Public Health Data Analysis: Use datasets from public health sources (like CDC) to analyze trends in health metrics (e.g., vaccination rates, disease outbreaks) and visualize findings.
8. Real Estate Market Analysis: Analyze real estate listings to find trends in pricing, location, and features. Use data visualization to present your findings.
9. Weather Data Visualization: Collect weather data and analyze trends over time. Create visualizations to show changes in temperature, precipitation, or extreme weather events.
10. Financial Analysis: Analyze a companyโs financial statements to assess its performance over time. Create visualizations to highlight key financial ratios and trends.
Data Analytics Resources ๐๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Hope it helps :)
1. Sales Analysis Dashboard: Use tools like Excel or Tableau to create a dashboard analyzing sales data. Visualize trends, top products, and seasonal patterns.
2. Customer Segmentation: Analyze customer data using clustering techniques (like K-means) to segment customers based on purchasing behavior and demographics.
3. Social Media Metrics Analysis: Gather data from social media platforms to analyze engagement metrics. Create visualizations to highlight trends and performance.
4. Survey Data Analysis: Conduct a survey and analyze the results using statistical techniques. Present findings with visualizations to showcase insights.
5. Exploratory Data Analysis (EDA): Choose a public dataset and perform EDA using Python (Pandas, Matplotlib) or R (tidyverse). Summarize key insights and visualizations.
6. Employee Performance Analysis: Analyze employee performance data to identify trends in productivity, turnover rates, and training effectiveness.
7. Public Health Data Analysis: Use datasets from public health sources (like CDC) to analyze trends in health metrics (e.g., vaccination rates, disease outbreaks) and visualize findings.
8. Real Estate Market Analysis: Analyze real estate listings to find trends in pricing, location, and features. Use data visualization to present your findings.
9. Weather Data Visualization: Collect weather data and analyze trends over time. Create visualizations to show changes in temperature, precipitation, or extreme weather events.
10. Financial Analysis: Analyze a companyโs financial statements to assess its performance over time. Create visualizations to highlight key financial ratios and trends.
Data Analytics Resources ๐๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Hope it helps :)
โค1
๐ฉ๐ปโ๐ป Why should one study Linear Algebra for ML?
๐๐ผ Clearly, to develop a better intuition for machine learning and deep learning algorithms and not treat them as black boxes. This would allow you to choose proper hyper-parameters and develop a better model. You would also be able to code algorithms from scratch and make your own variations to them as well.
๐๐ผ Learn Linear Algebra for Machine Learning with:
Khan Academy: https://www.khanacademy.org/math/linear-algebra
Udacity: https://www.udacity.com/course/linear-algebra-refresher-course--ud953
Coursera: https://www.coursera.org/learn/linear-algebra-machine-learning
Here are some amazing freely available ebooks on the same topic:
Mathematics for Machine Learning: https://mml-book.github.io/book/mml-book.pdf
An Introduction to Statistical Learning: https://faculty.marshall.usc.edu/gareth-james/ISL/
Happy machine learning! ๐
๐๐ผ Clearly, to develop a better intuition for machine learning and deep learning algorithms and not treat them as black boxes. This would allow you to choose proper hyper-parameters and develop a better model. You would also be able to code algorithms from scratch and make your own variations to them as well.
๐๐ผ Learn Linear Algebra for Machine Learning with:
Khan Academy: https://www.khanacademy.org/math/linear-algebra
Udacity: https://www.udacity.com/course/linear-algebra-refresher-course--ud953
Coursera: https://www.coursera.org/learn/linear-algebra-machine-learning
Here are some amazing freely available ebooks on the same topic:
Mathematics for Machine Learning: https://mml-book.github.io/book/mml-book.pdf
An Introduction to Statistical Learning: https://faculty.marshall.usc.edu/gareth-james/ISL/
Happy machine learning! ๐
โค2
10 AI Trends to Watch in 2025
โ Open-Source LLM Boom โ Models like Mistral, LLaMA, and Mixtral rivaling proprietary giants
โ Multi-Agent AI Systems โ AIs collaborating with each other to complete complex tasks
โ Edge AI โ Smarter AI running directly on mobile & IoT devices, no cloud needed
โ AI Legislation & Ethics โ Governments setting global AI rules and ethical frameworks
โ Personalized AI Companions โ Customizable chatbots for productivity, learning, and therapy
โ AI in Robotics โ Real-world actions powered by vision-language models
โ AI-Powered Search โ Tools like Perplexity and You.com reshaping how we explore the web
โ Generative Video & 3D โ Text-to-video and image-to-3D tools going mainstream
โ AI-Native Programming โ Entire codebases generated and managed by AI agents
โ Sustainable AI โ Focus on reducing model training energy & creating green AI systems
React if you're following any of these trends closely!
#genai
โ Open-Source LLM Boom โ Models like Mistral, LLaMA, and Mixtral rivaling proprietary giants
โ Multi-Agent AI Systems โ AIs collaborating with each other to complete complex tasks
โ Edge AI โ Smarter AI running directly on mobile & IoT devices, no cloud needed
โ AI Legislation & Ethics โ Governments setting global AI rules and ethical frameworks
โ Personalized AI Companions โ Customizable chatbots for productivity, learning, and therapy
โ AI in Robotics โ Real-world actions powered by vision-language models
โ AI-Powered Search โ Tools like Perplexity and You.com reshaping how we explore the web
โ Generative Video & 3D โ Text-to-video and image-to-3D tools going mainstream
โ AI-Native Programming โ Entire codebases generated and managed by AI agents
โ Sustainable AI โ Focus on reducing model training energy & creating green AI systems
React if you're following any of these trends closely!
#genai
โค3
I recently saw a radar chart (shared below) that maps out the skill sets across these rolesโand it got me thinkingโฆ
Hereโs a quick breakdown:
๐ง ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ โ The pipeline architect. Loves building scalable systems. Tools like Kafka, Spark, and Airflow are your playground.
๐ค ๐ ๐ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ โ The deployment expert. Knows how to take a model and make it work in the real world. Think automation, DevOps, and system design.
๐ง ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐ โ The experimenter. Focused on digging deep, modeling, and delivering insights. Python, stats, and Jupyter notebooks all day.
๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ โ The storyteller. Turns raw numbers into meaningful business insights. If you live in Excel, Tableau, or Power BIโyou know what I mean.
๐ก ๐ฅ๐ฒ๐ฎ๐น ๐๐ฎ๐น๐ธ: You donโt need to be all of them. But knowing where you shine helps you aim your learning and job search in the right direction.
Whatโs your current roleโand whatโs one skill you're working on this year? ๐
Hereโs a quick breakdown:
๐ง ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ โ The pipeline architect. Loves building scalable systems. Tools like Kafka, Spark, and Airflow are your playground.
๐ค ๐ ๐ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ โ The deployment expert. Knows how to take a model and make it work in the real world. Think automation, DevOps, and system design.
๐ง ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐ โ The experimenter. Focused on digging deep, modeling, and delivering insights. Python, stats, and Jupyter notebooks all day.
๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ โ The storyteller. Turns raw numbers into meaningful business insights. If you live in Excel, Tableau, or Power BIโyou know what I mean.
๐ก ๐ฅ๐ฒ๐ฎ๐น ๐๐ฎ๐น๐ธ: You donโt need to be all of them. But knowing where you shine helps you aim your learning and job search in the right direction.
Whatโs your current roleโand whatโs one skill you're working on this year? ๐
โค2
Hey guys!
Iโve been getting a lot of requests from you all asking for solid Data Analytics projects that can help you boost resume and build real skills.
So here you go โ
These arenโt just โfor practice,โ theyโre portfolio-worthy projects that show recruiters youโre ready for real-world work.
1. Sales Performance Dashboard
Tools: Excel / Power BI / Tableau
Youโll take raw sales data and turn it into a clean, interactive dashboard. Show key metrics like revenue, profit, top products, and regional trends.
Skills you build: Data cleaning, slicing & filtering, dashboard creation, business storytelling.
2. Customer Churn Analysis
Tools: Python (Pandas, Seaborn)
Work with a telecom or SaaS dataset to identify which customers are likely to leave and why.
Skills you build: Exploratory data analysis, visualization, correlation, and basic machine learning.
3. E-commerce Product Insights using SQL
Tools: SQL + Power BI
Analyze product categories, top-selling items, and revenue trends from a sample e-commerce dataset.
Skills you build: Joins, GROUP BY, aggregation, data modeling, and visual storytelling.
4. HR Analytics Dashboard
Tools: Excel / Power BI
Dive into employee data to find patterns in attrition, hiring trends, average salaries by department, etc.
Skills you build: Data summarization, calculated fields, visual formatting, DAX basics.
5. Movie Trends Analysis (Netflix or IMDb Dataset)
Tools: Python (Pandas, Matplotlib)
Explore trends across genres, ratings, and release years. Great for people who love entertainment and want to show creativity.
Skills you build: Data wrangling, time-series plots, filtering techniques.
6. Marketing Campaign Analysis
Tools: Excel / Power BI / SQL
Analyze data from a marketing campaign to measure ROI, conversion rates, and customer engagement. Identify which channels or strategies worked best and suggest improvements.
Skills you build: Data blending, KPI calculation, segmentation, and actionable insights.
7. Financial Expense Analysis & Budget Forecasting
Tools: Excel / Power BI / Python
Work on a companyโs expense data to analyze spending patterns, categorize expenses, and create a forecasting model to predict future budgets.
Skills you build: Time series analysis, forecasting, budgeting, and financial storytelling.
Pick 2โ3 projects. Donโt just show the final visuals โ explain your process on LinkedIn or GitHub. Thatโs what sets you apart.
Like for more useful content โค๏ธ
Iโve been getting a lot of requests from you all asking for solid Data Analytics projects that can help you boost resume and build real skills.
So here you go โ
These arenโt just โfor practice,โ theyโre portfolio-worthy projects that show recruiters youโre ready for real-world work.
1. Sales Performance Dashboard
Tools: Excel / Power BI / Tableau
Youโll take raw sales data and turn it into a clean, interactive dashboard. Show key metrics like revenue, profit, top products, and regional trends.
Skills you build: Data cleaning, slicing & filtering, dashboard creation, business storytelling.
2. Customer Churn Analysis
Tools: Python (Pandas, Seaborn)
Work with a telecom or SaaS dataset to identify which customers are likely to leave and why.
Skills you build: Exploratory data analysis, visualization, correlation, and basic machine learning.
3. E-commerce Product Insights using SQL
Tools: SQL + Power BI
Analyze product categories, top-selling items, and revenue trends from a sample e-commerce dataset.
Skills you build: Joins, GROUP BY, aggregation, data modeling, and visual storytelling.
4. HR Analytics Dashboard
Tools: Excel / Power BI
Dive into employee data to find patterns in attrition, hiring trends, average salaries by department, etc.
Skills you build: Data summarization, calculated fields, visual formatting, DAX basics.
5. Movie Trends Analysis (Netflix or IMDb Dataset)
Tools: Python (Pandas, Matplotlib)
Explore trends across genres, ratings, and release years. Great for people who love entertainment and want to show creativity.
Skills you build: Data wrangling, time-series plots, filtering techniques.
6. Marketing Campaign Analysis
Tools: Excel / Power BI / SQL
Analyze data from a marketing campaign to measure ROI, conversion rates, and customer engagement. Identify which channels or strategies worked best and suggest improvements.
Skills you build: Data blending, KPI calculation, segmentation, and actionable insights.
7. Financial Expense Analysis & Budget Forecasting
Tools: Excel / Power BI / Python
Work on a companyโs expense data to analyze spending patterns, categorize expenses, and create a forecasting model to predict future budgets.
Skills you build: Time series analysis, forecasting, budgeting, and financial storytelling.
Pick 2โ3 projects. Donโt just show the final visuals โ explain your process on LinkedIn or GitHub. Thatโs what sets you apart.
Like for more useful content โค๏ธ
โค4