Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence
37.5K subscribers
283 photos
76 files
336 links
Free Datasets For Data Science Projects & Portfolio

Buy ads: https://telega.io/c/DataPortfolio

For Promotions/ads: @coderfun @love_data
Download Telegram
Data Science Learning Plan

Step 1: Mathematics for Data Science (Statistics, Probability, Linear Algebra)

Step 2: Python for Data Science (Basics and Libraries)

Step 3: Data Manipulation and Analysis (Pandas, NumPy)

Step 4: Data Visualization (Matplotlib, Seaborn, Plotly)

Step 5: Databases and SQL for Data Retrieval

Step 6: Introduction to Machine Learning (Supervised and Unsupervised Learning)

Step 7: Data Cleaning and Preprocessing

Step 8: Feature Engineering and Selection

Step 9: Model Evaluation and Tuning

Step 10: Deep Learning (Neural Networks, TensorFlow, Keras)

Step 11: Working with Big Data (Hadoop, Spark)

Step 12: Building Data Science Projects and Portfolio

Data Science Resources
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y

Like for more ๐Ÿ˜„
โค5
Today let's understand the fascinating world of Data Science from start.

## What is Data Science?

Data science is an interdisciplinary field that uses scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured and unstructured data. In simpler terms, data science involves obtaining, processing, and analyzing data to gain insights for various purposesยนยฒ.

### The Data Science Lifecycle

The data science lifecycle refers to the various stages a data science project typically undergoes. While each project is unique, most follow a similar structure:

1. Data Collection and Storage:
- In this initial phase, data is collected from various sources such as databases, Excel files, text files, APIs, web scraping, or real-time data streams.
- The type and volume of data collected depend on the specific problem being addressed.
- Once collected, the data is stored in an appropriate format for further processing.

2. Data Preparation:
- Often considered the most time-consuming phase, data preparation involves cleaning and transforming raw data into a suitable format for analysis.
- Tasks include handling missing or inconsistent data, removing duplicates, normalization, and data type conversions.
- The goal is to create a clean, high-quality dataset that can yield accurate and reliable analytical results.

3. Exploration and Visualization:
- During this phase, data scientists explore the prepared data to understand its patterns, characteristics, and potential anomalies.
- Techniques like statistical analysis and data visualization are used to summarize the data's main features.
- Visualization methods help convey insights effectively.

4. Model Building and Machine Learning:
- This phase involves selecting appropriate algorithms and building predictive models.
- Machine learning techniques are applied to train models on historical data and make predictions.
- Common tasks include regression, classification, clustering, and recommendation systems.

5. Model Evaluation and Deployment:
- After building models, they are evaluated using metrics such as accuracy, precision, recall, and F1-score.
- Once satisfied with the model's performance, it can be deployed for real-world use.
- Deployment may involve integrating the model into an application or system.

### Why Data Science Matters

- Business Insights: Organizations use data science to gain insights into customer behavior, market trends, and operational efficiency. This informs strategic decisions and drives business growth.

- Healthcare and Medicine: Data science helps analyze patient data, predict disease outbreaks, and optimize treatment plans. It contributes to personalized medicine and drug discovery.

- Finance and Risk Management: Financial institutions use data science for fraud detection, credit scoring, and risk assessment. It enhances decision-making and minimizes financial risks.

- Social Sciences and Public Policy: Data science aids in understanding social phenomena, predicting election outcomes, and optimizing public services.

- Technology and Innovation: Data science fuels innovations in artificial intelligence, natural language processing, and recommendation systems.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
โค2
Key Concepts for Data Science Interviews

1. Data Cleaning and Preprocessing: Master techniques for cleaning, transforming, and preparing data for analysis, including handling missing data, outlier detection, data normalization, and feature engineering.

2. Statistics and Probability: Have a solid understanding of descriptive and inferential statistics, including distributions, hypothesis testing, p-values, confidence intervals, and Bayesian probability.

3. Linear Algebra and Calculus: Understand the mathematical foundations of data science, including matrix operations, eigenvalues, derivatives, and gradients, which are essential for algorithms like PCA and gradient descent.

4. Machine Learning Algorithms: Know the fundamentals of machine learning, including supervised and unsupervised learning. Be familiar with key algorithms like linear regression, logistic regression, decision trees, random forests, SVMs, and k-means clustering.

5. Model Evaluation and Validation: Learn how to evaluate model performance using metrics such as accuracy, precision, recall, F1 score, ROC-AUC, and confusion matrices. Understand techniques like cross-validation and overfitting prevention.

6. Feature Engineering: Develop the ability to create meaningful features from raw data that improve model performance. This includes encoding categorical variables, scaling features, and creating interaction terms.

7. Deep Learning: Understand the basics of neural networks and deep learning. Familiarize yourself with architectures like CNNs, RNNs, and frameworks like TensorFlow and PyTorch.

8. Natural Language Processing (NLP): Learn key NLP techniques such as tokenization, stemming, lemmatization, and sentiment analysis. Understand the use of models like BERT, Word2Vec, and LSTM for text data.

9. Big Data Technologies: Gain knowledge of big data frameworks and tools like Hadoop, Spark, and NoSQL databases that are used to process large datasets efficiently.

10. Data Visualization and Storytelling: Develop the ability to create compelling visualizations using tools like Matplotlib, Seaborn, or Tableau. Practice conveying your data findings clearly to both technical and non-technical audiences through visual storytelling.

11. Python and R: Be proficient in Python and R for data manipulation, analysis, and model building. Familiarity with libraries like Pandas, NumPy, Scikit-learn, and tidyverse is essential.

12. Domain Knowledge: Develop a deep understanding of the specific industry or domain you're working in, as this context helps you make more informed decisions during the data analysis and modeling process.

I have curated the best interview resources to crack Data Science Interviews
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
โค2
Advanced Jupyter Notebook Shortcut Keys โŒจ

Multicursor Editing:

Ctrl + Click: Place multiple cursors for simultaneous editing.


Navigate to Specific Cells:

Ctrl + L: Center the active cell in the viewport.

Ctrl + J: Jump to the first cell.


Cell Output Management:

Shift + L: Toggle line numbers in the code cell.

Ctrl + M + H: Hide all cell outputs.

Ctrl + M + O: Toggle all cell outputs.


Markdown Editing:

Ctrl + M + B: Add bullet points in Markdown.

Ctrl + M + H: Insert a header in Markdown.


Code Folding/Unfolding:

Alt + Click: Fold or unfold a section of code.


Quick Help:

H: Open the help menu in Command Mode.

These shortcuts improve workflow efficiency in Jupyter Notebook, helping you to code faster and more effectively.

I have curated best Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more content like this ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค2
Guys, We Did It!

We just crossed 1 Lakh followers on WhatsApp โ€” and Iโ€™m dropping something massive for you all!

Iโ€™m launching a Data Science Learning Series โ€” where I will cover essential Data Science & Machine Learning concepts from basic to advanced level covering real-world projects with step-by-step explanations, hands-on examples, and quizzes to test your skills after every major topic.

Hereโ€™s what weโ€™ll cover in the coming days:

Week 1: Data Science Foundations

- What is Data Science?

- Where is DS used in real life?

- Data Analyst vs Data Scientist vs ML Engineer

- Tools used in DS (with icons & examples)

- DS Life Cycle (Step-by-step)

- Mini Quiz: Week 1 Topics

Week 2: Python for Data Science (Basics Only)

- Variables, Data Types, Lists, Dicts (with real-world data)

- Loops & Conditional Statements

- Functions (only basics)

- Importing CSV, Viewing Data

- Intro to Pandas DataFrame

- Mini Quiz: Python Topics


Week 3: Data Cleaning & Preparation

- Handling Missing Data

- Duplicates, Outliers (conceptual + pandas code)

- Data Type Conversions

- Renaming Columns, Reindexing

- Combining Datasets

- Mini Quiz: Choose the right method (dropna vs fillna, etc.)


Week 4: Data Exploration & Visualization

- Descriptive Stats (mean, median, std)

- GroupBy, Value_counts

- Visualizing with Pandas (plot, bar, hist)

- Matplotlib & Seaborn (basic use only)

- Correlation & Heatmaps

- Mini Quiz: Match chart type with goal


Week 5: Feature Engineering + Intro to ML

What is Feature Engineering?

Encoding (Label, One-Hot), Scaling

Train-Test Split, ML Pipeline

Supervised vs Unsupervised

Linear Regression: Concept Only

Mini Quiz: Regression or Classification?



Week 6: Model Building & Evaluation

- Train a Linear Regression Model

- Logistic Regression (basic example)

- Model Evaluation (Accuracy, Precision, Recall)

- Confusion Matrix (explanation)

- Overfitting & Underfitting (concepts)

- Mini Quiz: Model Evaluation Scenarios

Week 7: Real-World Projects

- Project 1: Predict House Prices

- Project 2: Classify Emails as Spam

- Project 3: Explore Titanic Dataset

- How to structure your project

- What to upload on GitHub

- Mini Quiz: Whatโ€™s missing in this project?


Week 8: Career Boost Week

- Resume Tips for DS Roles

- Portfolio Tips (GitHub/Notion/PDF)

- Best Platforms to Apply (Internship + Job)

- 15 Most Common DS Interview Qs

- Mock Interview Questions for Practice

- Final Recap Quiz

React with โค๏ธ if you're ready for this new journey

Join our WhatsApp channel now: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998
โค7
FREE RESOURCES TO LEARN DATA ENGINEERING
๐Ÿ‘‡๐Ÿ‘‡

Big Data and Hadoop Essentials free course

https://bit.ly/3rLxbul

Data Engineer: Prepare Financial Data for ML and Backtesting FREE UDEMY COURSE
[4.6 stars out of 5]

https://bit.ly/3fGRjLu

Understanding Data Engineering from Datacamp

https://clnk.in/soLY

Data Engineering Free Books

https://ia600201.us.archive.org/4/items/springer_10.1007-978-1-4419-0176-7/10.1007-978-1-4419-0176-7.pdf

https://www.darwinpricing.com/training/Data_Engineering_Cookbook.pdf

Big Data of Data Engineering Free book

https://databricks.com/wp-content/uploads/2021/10/Big-Book-of-Data-Engineering-Final.pdf

https://aimlcommunity.com/wp-content/uploads/2019/09/Data-Engineering.pdf

The Data Engineerโ€™s Guide to Apache Spark

https://t.iss.one/datasciencefun/783?single

Data Engineering with Python

https://t.iss.one/pythondevelopersindia/343

Data Engineering Projects -

1.End-To-End From Web Scraping to Tableau  https://lnkd.in/ePMw63ge

2. Building Data Model and Writing ETL Job https://lnkd.in/eq-e3_3J

3. Data Modeling and Analysis using Semantic Web Technologies https://lnkd.in/e4A86Ypq

4. ETL Project in Azure Data Factory - https://lnkd.in/eP8huQW3

5. ETL Pipeline on AWS Cloud - https://lnkd.in/ebgNtNRR

6. Covid Data Analysis Project - https://lnkd.in/eWZ3JfKD

7. YouTube Data Analysis 
   (End-To-End Data Engineering Project) - https://lnkd.in/eYJTEKwF

8. Twitter Data Pipeline using Airflow - https://lnkd.in/eNxHHZbY

9. Sentiment analysis Twitter:
    Kafka and Spark Structured Streaming -  https://lnkd.in/esVAaqtU

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค2
Roadmap to become a Data Scientist:

๐Ÿ“‚ Learn Python & R
โˆŸ๐Ÿ“‚ Learn Statistics & Probability
โˆŸ๐Ÿ“‚ Learn SQL & Data Handling
โˆŸ๐Ÿ“‚ Learn Data Cleaning & Preprocessing
โˆŸ๐Ÿ“‚ Learn Data Visualization (Matplotlib, Seaborn, Power BI/Tableau)
โˆŸ๐Ÿ“‚ Learn Machine Learning (Supervised, Unsupervised)
โˆŸ๐Ÿ“‚ Learn Deep Learning (Neural Nets, CNNs, RNNs)
โˆŸ๐Ÿ“‚ Learn Model Deployment (Flask, Streamlit, FastAPI)
โˆŸ๐Ÿ“‚ Build Real-world Projects & Case Studies
โˆŸโœ… Apply for Jobs & Internships

React โค๏ธ for more

Free Data Science Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
โค2
Advice for those starting now

I hear so many people say they want to break into data analytics, yet they blindly copy what everyone else is doing instead of using the fundamentals and building their unique approach.

80% of the game is how you position yourself and who you connect with.

Spend more time:

- Solving real-life data problems (especially the ones you have).
- Showcasing those projects in a way that impresses recruiters (GitHub is not the one-size-fits all solution). There are other platforms where you can incorporate storytelling into your projects.
- Connect with like-minded people - Don't use AI for this.

I have curated top-notch Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://t.iss.one/DataSimplifier

Hope this helps you ๐Ÿ˜Š
โค2
Top 5 data science projects for freshers

1. Predictive Analytics on a Dataset:
   - Use a dataset to predict future trends or outcomes using machine learning algorithms. This could involve predicting sales, stock prices, or any other relevant domain.

2. Customer Segmentation:
   - Analyze and segment customers based on their behavior, preferences, or demographics. This project could provide insights for targeted marketing strategies.

3. Sentiment Analysis on Social Media Data:
   - Analyze sentiment in social media data to understand public opinion on a particular topic. This project helps in mastering natural language processing (NLP) techniques.

4. Recommendation System:
   - Build a recommendation system, perhaps for movies, music, or products, using collaborative filtering or content-based filtering methods.

5. Fraud Detection:
   - Develop a fraud detection system using machine learning algorithms to identify anomalous patterns in financial transactions or any domain where fraud detection is crucial.

Free Datsets -> https://t.iss.one/DataPortfolio/2?single

These projects showcase practical application of data science skills and can be highlighted on a resume for entry-level positions.

Join @pythonspecialist for more data science projects
โค2
List of AI Project Ideas ๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ป๐Ÿค– -

Beginner Projects

๐Ÿ”น Sentiment Analyzer
๐Ÿ”น Image Classifier
๐Ÿ”น Spam Detection System
๐Ÿ”น Face Detection
๐Ÿ”น Chatbot (Rule-based)
๐Ÿ”น Movie Recommendation System
๐Ÿ”น Handwritten Digit Recognition
๐Ÿ”น Speech-to-Text Converter
๐Ÿ”น AI-Powered Calculator
๐Ÿ”น AI Hangman Game

Intermediate Projects

๐Ÿ”ธ AI Virtual Assistant
๐Ÿ”ธ Fake News Detector
๐Ÿ”ธ Music Genre Classification
๐Ÿ”ธ AI Resume Screener
๐Ÿ”ธ Style Transfer App
๐Ÿ”ธ Real-Time Object Detection
๐Ÿ”ธ Chatbot with Memory
๐Ÿ”ธ Autocorrect Tool
๐Ÿ”ธ Face Recognition Attendance System
๐Ÿ”ธ AI Sudoku Solver

Advanced Projects

๐Ÿ”บ AI Stock Predictor
๐Ÿ”บ AI Writer (GPT-based)
๐Ÿ”บ AI-powered Resume Builder
๐Ÿ”บ Deepfake Generator
๐Ÿ”บ AI Lawyer Assistant
๐Ÿ”บ AI-Powered Medical Diagnosis
๐Ÿ”บ AI-based Game Bot
๐Ÿ”บ Custom Voice Cloning
๐Ÿ”บ Multi-modal AI App
๐Ÿ”บ AI Research Paper Summarizer

Join for more: https://t.iss.one/machinelearning_deeplearning
โค2
Data Analyst vs Data Scientist: Must-Know Differences

Data Analyst:
- Role: Primarily focuses on interpreting data, identifying trends, and creating reports that inform business decisions.
- Best For: Individuals who enjoy working with existing data to uncover insights and support decision-making in business processes.
- Key Responsibilities:
  - Collecting, cleaning, and organizing data from various sources.
  - Performing descriptive analytics to summarize the data (trends, patterns, anomalies).
  - Creating reports and dashboards using tools like Excel, SQL, Power BI, and Tableau.
  - Collaborating with business stakeholders to provide data-driven insights and recommendations.
- Skills Required:
  - Proficiency in data visualization tools (e.g., Power BI, Tableau).
  - Strong analytical and statistical skills, along with expertise in SQL and Excel.
  - Familiarity with business intelligence and basic programming (optional).
- Outcome: Data analysts provide actionable insights to help companies make informed decisions by analyzing and visualizing data, often focusing on current and historical trends.

Data Scientist:
- Role: Combines statistical methods, machine learning, and programming to build predictive models and derive deeper insights from data.
- Best For: Individuals who enjoy working with complex datasets, developing algorithms, and using advanced analytics to solve business problems.
- Key Responsibilities:
  - Designing and developing machine learning models for predictive analytics.
  - Collecting, processing, and analyzing large datasets (structured and unstructured).
  - Using statistical methods, algorithms, and data mining to uncover hidden patterns.
  - Writing and maintaining code in programming languages like Python, R, and SQL.
  - Working with big data technologies and cloud platforms for scalable solutions.
- Skills Required:
  - Proficiency in programming languages like Python, R, and SQL.
  - Strong understanding of machine learning algorithms, statistics, and data modeling.
  - Experience with big data tools (e.g., Hadoop, Spark) and cloud platforms (AWS, Azure).
- Outcome: Data scientists develop models that predict future outcomes and drive innovation through advanced analytics, going beyond what has happened to explain why it happened and what will happen next.

Data analysts focus on analyzing and visualizing existing data to provide insights for current business challenges, while data scientists apply advanced algorithms and machine learning to predict future outcomes and derive deeper insights. Data scientists typically handle more complex problems and require a stronger background in statistics, programming, and machine learning.

I have curated best 80+ top-notch Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://t.iss.one/DataSimplifier

Like this post for more content like this ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค2
1.What are the conditions for Overfitting and Underfitting?

Ans:
โ€ข In Overfitting the model performs well for the training data, but for any new data it fails to provide output. For Underfitting the model is very simple and not able to identify the correct relationship. Following are the bias and variance conditions.

โ€ข Overfitting โ€“ Low bias and High Variance results in the overfitted model. The decision tree is more prone to Overfitting.

โ€ข Underfitting โ€“ High bias and Low Variance. Such a model doesnโ€™t perform well on test data also. For example โ€“ Linear Regression is more prone to Underfitting.


2. Which models are more prone to Overfitting?

Ans: Complex models, like the Random Forest, Neural Networks, and XGBoost are more prone to overfitting. Simpler models, like linear regression, can overfit too โ€“ this typically happens when there are more features than the number of instances in the training data.


3.  When does feature scaling should be done?

Ans: We need to perform Feature Scaling when we are dealing with Gradient Descent Based algorithms (Linear and Logistic Regression, Neural Network) and Distance-based algorithms (KNN, K-means, SVM) as these are very sensitive to the range of the data points.


4. What is a logistic function? What is the range of values of a logistic function?

Ans. f(z) = 1/(1+e -z )
The values of a logistic function will range from 0 to 1. The values of Z will vary from -infinity to +infinity.


5. What are the drawbacks of a linear model?

Ans. There are a couple of drawbacks of a linear model:

A linear model holds some strong assumptions that may not be true in application. It assumes a linear relationship, multivariate normality, no or little multicollinearity, no auto-correlation, and homoscedasticity
A linear model canโ€™t be used for discrete or binary outcomes.
You canโ€™t vary the model flexibility of a linear model.
โค2
Excel Scenario-Based Questions Interview Questions and Answers :


Scenario 1) Imagine you have a dataset with missing values. How would you approach this problem in Excel?

Answer:

To handle missing values in Excel:

1. Identify Missing Data:

Use filters to quickly find blank cells.

Apply conditional formatting:
Home โ†’ Conditional Formatting โ†’ New Rule โ†’ Format only cells that are blank.


2. Handle Missing Data:

Delete rows with missing critical data (if appropriate).

Fill missing values:

Use =IF(A2="", "N/A", A2) to replace blanks with โ€œN/Aโ€.

Use Fill Down (Ctrl + D) if the previous value applies.

Use functions like =AVERAGEIF(range, "<>", range) to fill with average.


3. Use Power Query (for large datasets):

Load data into Power Query and use โ€œReplace Valuesโ€ or โ€œRemove Emptyโ€ options.

Scenario 2) You are given a dataset with multiple sheets. How would you consolidate the data for analysis?

Answer:

Approach 1: Manual Consolidation

1. Use Copy-Paste from each sheet into a master sheet.
2. Add a new column to identify the source sheet (optional but useful).
3. Convert the master data into a table for analysis.



Approach 2: Use Power Query (Recommended for large datasets)

1. Go to Data โ†’ Get & Transform โ†’ Get Data โ†’ From Workbook.
2. Load each sheet into Power Query.
3. Use the Append Queries option to merge all sheets.


4. Clean and transform as needed, then load it back to Excel.

Approach 3: Use VBA (Advanced Users)

Write a macro to loop through all sheets and append data to a master sheet.

Hope it helps :)
โค2
If youโ€™re a Data Analyst, chances are you use ๐’๐๐‹ every single day. And if youโ€™re preparing for interviews, youโ€™ve probably realized that it's not just about writing queries it's about writing smart, efficient, and scalable ones.

1. ๐๐ซ๐ž๐š๐ค ๐ˆ๐ญ ๐ƒ๐จ๐ฐ๐ง ๐ฐ๐ข๐ญ๐ก ๐‚๐“๐„๐ฌ (๐‚๐จ๐ฆ๐ฆ๐จ๐ง ๐“๐š๐›๐ฅ๐ž ๐„๐ฑ๐ฉ๐ซ๐ž๐ฌ๐ฌ๐ข๐จ๐ง๐ฌ)

Ever worked on a query that became an unreadable monster? CTEs let you break that down into logical steps. You can treat them like temporary views โ€” great for simplifying logic and improving collaboration across your team.

2. ๐”๐ฌ๐ž ๐–๐ข๐ง๐๐จ๐ฐ ๐…๐ฎ๐ง๐œ๐ญ๐ข๐จ๐ง๐ฌ

Forget the mess of subqueries. With functions like ROW_NUMBER(), RANK(), LEAD() and LAG(), you can compare rows, rank items, or calculate running totals โ€” all within the same query. Total

3. ๐’๐ฎ๐›๐ช๐ฎ๐ž๐ซ๐ข๐ž๐ฌ (๐๐ž๐ฌ๐ญ๐ž๐ ๐๐ฎ๐ž๐ซ๐ข๐ž๐ฌ)

Yes, they're old school, but nested subqueries are still powerful. Use them when you want to filter based on results of another query or isolate logic step-by-step before joining with the big picture.

4. ๐ˆ๐ง๐๐ž๐ฑ๐ž๐ฌ & ๐๐ฎ๐ž๐ซ๐ฒ ๐Ž๐ฉ๐ญ๐ข๐ฆ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง

Query taking forever? Look at your indexes. Index the columns you use in JOINs, WHERE, and GROUP BY. Even basic knowledge of how the SQL engine reads data can take your skills up a notch.

5. ๐‰๐จ๐ข๐ง๐ฌ ๐ฏ๐ฌ. ๐’๐ฎ๐›๐ช๐ฎ๐ž๐ซ๐ข๐ž๐ฌ

Joins are usually faster and better for combining large datasets. Subqueries, on the other hand, are cleaner when doing one-off filters or smaller operations. Choose wisely based on the context.

6. ๐‚๐€๐’๐„ ๐’๐ญ๐š๐ญ๐ž๐ฆ๐ž๐ง๐ญ๐ฌ:

Want to categorize or bucket data without creating a separate table? Use CASE. Itโ€™s ideal for conditional logic, custom labels, and grouping in a single query.

7. ๐€๐ ๐ ๐ซ๐ž๐ ๐š๐ญ๐ข๐จ๐ง๐ฌ & ๐†๐‘๐Ž๐”๐ ๐๐˜

Most analytics questions start with "how many", "whatโ€™s the average", or "which is the highest?". SUM(), COUNT(), AVG(), etc., and pair them with GROUP BY to drive insights that matter.

8. ๐ƒ๐š๐ญ๐ž๐ฌ ๐€๐ซ๐ž ๐€๐ฅ๐ฐ๐š๐ฒ๐ฌ ๐“๐ซ๐ข๐œ๐ค๐ฒ

Time-based analysis is everywhere: trends, cohorts, seasonality, etc. Get familiar with functions like DATEADD, DATEDIFF, DATE_TRUNC, and DATEPART to work confidently with time series data.

9. ๐’๐ž๐ฅ๐Ÿ-๐‰๐จ๐ข๐ง๐ฌ & ๐‘๐ž๐œ๐ฎ๐ซ๐ฌ๐ข๐ฏ๐ž ๐๐ฎ๐ž๐ซ๐ข๐ž๐ฌ ๐Ÿ๐จ๐ซ ๐‡๐ข๐ž๐ซ๐š๐ซ๐œ๐ก๐ข๐ž๐ฌ

Whether it's org charts or product categories, not all data is flat. Learn how to join a table to itself or use recursive CTEs to navigate parent-child relationships effectively.


You donโ€™t need to memorize 100 functions. You need to understand 10 really well and apply them smartly. These are the concepts I keep going back to not just in interviews, but in the real world where clarity, performance, and logic matter most.
โค2
Machine Learning โ€“ Essential Concepts ๐Ÿš€

1๏ธโƒฃ Types of Machine Learning

Supervised Learning โ€“ Uses labeled data to train models.

Examples: Linear Regression, Decision Trees, Random Forest, SVM


Unsupervised Learning โ€“ Identifies patterns in unlabeled data.

Examples: Clustering (K-Means, DBSCAN), PCA


Reinforcement Learning โ€“ Models learn through rewards and penalties.

Examples: Q-Learning, Deep Q Networks



2๏ธโƒฃ Key Algorithms

Regression โ€“ Predicts continuous values (Linear Regression, Ridge, Lasso).

Classification โ€“ Categorizes data into classes (Logistic Regression, Decision Tree, SVM, Naรฏve Bayes).

Clustering โ€“ Groups similar data points (K-Means, Hierarchical Clustering, DBSCAN).

Dimensionality Reduction โ€“ Reduces the number of features (PCA, t-SNE, LDA).


3๏ธโƒฃ Model Training & Evaluation

Train-Test Split โ€“ Dividing data into training and testing sets.

Cross-Validation โ€“ Splitting data multiple times for better accuracy.

Metrics โ€“ Evaluating models with RMSE, Accuracy, Precision, Recall, F1-Score, ROC-AUC.


4๏ธโƒฃ Feature Engineering

Handling missing data (mean imputation, dropna()).

Encoding categorical variables (One-Hot Encoding, Label Encoding).

Feature Scaling (Normalization, Standardization).


5๏ธโƒฃ Overfitting & Underfitting

Overfitting โ€“ Model learns noise, performs well on training but poorly on test data.

Underfitting โ€“ Model is too simple and fails to capture patterns.

Solution: Regularization (L1, L2), Hyperparameter Tuning.


6๏ธโƒฃ Ensemble Learning

Combining multiple models to improve performance.

Bagging (Random Forest)

Boosting (XGBoost, Gradient Boosting, AdaBoost)



7๏ธโƒฃ Deep Learning Basics

Neural Networks (ANN, CNN, RNN).

Activation Functions (ReLU, Sigmoid, Tanh).

Backpropagation & Gradient Descent.


8๏ธโƒฃ Model Deployment

Deploy models using Flask, FastAPI, or Streamlit.

Model versioning with MLflow.

Cloud deployment (AWS SageMaker, Google Vertex AI).

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
โค4