Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence
37.5K subscribers
283 photos
76 files
336 links
Free Datasets For Data Science Projects & Portfolio

Buy ads: https://telega.io/c/DataPortfolio

For Promotions/ads: @coderfun @love_data
Download Telegram
๐Ÿ“GOOGLE (GOOGL) Stock Financial News: 2000โ€“Today

๐Ÿ“Œ Alphabet (GOOG) Daily News Feed | 2000โ€“2025 for Investors & Analysts

๐Ÿ”

This dataset provides a comprehensive daily news feed about Alphabet Inc. (GOOGL) from 2000 to 2025. It's ideal for NLP applications, sentiment analysis, and exploring how financial news impacts stock prices. When combined with the accompanying dataset containing Googleโ€™s financial statements and stock prices, it becomes a powerful tool for building predictive models, conducting event-driven investment analysis, and understanding the interplay between corporate news and market behavior.

#StockMarketAnalysis#FinancialNLP#SentimentAnalysis#GOOGL#TimeSeriesData
โค1
archive.zip
37.8 KB
๐Ÿ”˜GOOGLE (GOOGL) Stock Financial News: 2000โ€“Today
โค1
๐—•๐—ฟ๐—ฒ๐—ฎ๐—ธ ๐—œ๐—ป๐˜๐—ผ ๐——๐—ฒ๐—ฒ๐—ฝ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ ๐˜„๐—ถ๐˜๐—ต ๐—ง๐—ต๐—ถ๐˜€ ๐—™๐—ฅ๐—˜๐—˜ ๐— ๐—œ๐—ง ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐Ÿ˜

If youโ€™re serious about AI, you canโ€™t skip Deep Learningโ€”and this FREE course from MIT is one of the best ways to start๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

Offered by MITโ€™s top researchers and engineers, this online course is open to everyone, no matter where you live or work๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3H6cggR

Why wait to get started when you can learn from MIT for free?โœ…๏ธ
โค1
Q. Explain the data preprocessing steps in data analysis.

Ans. Data preprocessing transforms the data into a format that is more easily and effectively processed in data mining, machine learning and other data science tasks.
1. Data profiling.
2. Data cleansing.
3. Data reduction.
4. Data transformation.
5. Data enrichment.
6. Data validation.

Q. What Are the Three Stages of Building a Model in Machine Learning?

Ans. The three stages of building a machine learning model are:

Model Building: Choosing a suitable algorithm for the model and train it according to the requirement

Model Testing: Checking the accuracy of the model through the test data

Applying the Model: Making the required changes after testing and use the final model for real-time projects


Q. What are the subsets of SQL?

Ans. The following are the four significant subsets of the SQL:

Data definition language (DDL): It defines the data structure that consists of commands like CREATE, ALTER, DROP, etc.

Data manipulation language (DML): It is used to manipulate existing data in the database. The commands in this category are SELECT, UPDATE, INSERT, etc.

Data control language (DCL): It controls access to the data stored in the database. The commands in this category include GRANT and REVOKE.

Transaction Control Language (TCL): It is used to deal with the transaction operations in the database. The commands in this category are COMMIT, ROLLBACK, SET TRANSACTION, SAVEPOINT, etc.


Q. What is a Parameter in Tableau? Give an Example.

Ans. A parameter is a dynamic value that a customer could select, and you can use it to replace constant values in calculations, filters, and reference lines.
For example, when creating a filter to show the top 10 products based on total profit instead of the fixed value, you can update the filter to show the top 10, 20, or 30 products using a parameter.
โค6
Forwarded from Artificial Intelligence
๐Ÿฐ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜ ๐—–๐—ผ๐—ฑ๐—ถ๐—ป๐—ด ๐—Ÿ๐—ถ๐—ธ๐—ฒ ๐—ฎ ๐—ฃ๐—ฟ๐—ผ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Looking to kickstart your coding journey with Python? ๐Ÿ

Whether youโ€™re an aspiring data analyst, a student, or preparing for tech roles, these free Python courses are perfect for beginners!๐Ÿ“Š๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4jtpf9M

These platforms offer high-quality learning โ€” no fees, no catchโœ…๏ธ
Power BI Interview Questions Asked Bajaj Auto Ltd

1. Self Introduction
2. What are your roles and responsibilities of your project?
3. Difference between Import Mode and Direct Mode?
4. What kind of projects have you worked on Domain?
5. How do you handle complex data transformations in Power Query? Can you provide an example of a challenging transformation you implemented?
6. What challenges you faced while doing a projects?
7. Types of Refreshes in Power BI?
8. What is DAX in Power BI?
9. How do you perform data cleansing and transformation in Power BI?
10. How do you connect to data sources in Power BI?
11. What are the components in Power BI?
12. What is Power Pivot will do in Power BI?
13. Write a query to fetch top 5 employees having highest salary?
14. Write a query to find 2nd highest salary from employee table?
15. Difference between Rank function & Dense Rank function in SQL?
16. Difference between Power BI Desktop & Power BI Service?
17. How will you optimize Power BI reports?
18. What are the difficulties you have faced when doing a projects?
19. How can you optimize a SQL query?
20. What is Indexes?
21. How ETL process happen in Power BI?
22. What is difference between Star schema & Snowflake schema and how will know when to use which schemas respectively?
23. How will you perform filtering & it's types?
24. What is Bookmarks?
25. Difference between Drilldown and Drill through in Power BI?
26. Difference between Calculated column and measure?
27. Difference between Slicer and Filter?
28. What is a use Pandas, Matplotlib, seaborn Libraries?
29. Difference between Sum and SumX?
30. Do you have any questions?
โค1๐Ÿ‘1
๐—ง๐—ผ๐—ฝ ๐— ๐—ก๐—–๐˜€ ๐—ข๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿ˜

Google :- https://pdlink.in/3H2YJX7

Microsoft :- https://pdlink.in/4iq8QlM

Infosys :- https://pdlink.in/4jsHZXf

IBM :- https://pdlink.in/3QyJyqk

Cisco :- https://pdlink.in/4fYr1xO

Enroll For FREE & Get Certified ๐ŸŽ“
Machine Learning Algorithms every data scientist should know:

๐Ÿ“Œ Supervised Learning:

๐Ÿ”น Regression
โˆŸ Linear Regression
โˆŸ Ridge & Lasso Regression
โˆŸ Polynomial Regression

๐Ÿ”น Classification
โˆŸ Logistic Regression
โˆŸ K-Nearest Neighbors (KNN)
โˆŸ Decision Tree
โˆŸ Random Forest
โˆŸ Support Vector Machine (SVM)
โˆŸ Naive Bayes
โˆŸ Gradient Boosting (XGBoost, LightGBM, CatBoost)


๐Ÿ“Œ Unsupervised Learning:

๐Ÿ”น Clustering
โˆŸ K-Means
โˆŸ Hierarchical Clustering
โˆŸ DBSCAN

๐Ÿ”น Dimensionality Reduction
โˆŸ PCA (Principal Component Analysis)
โˆŸ t-SNE
โˆŸ LDA (Linear Discriminant Analysis)


๐Ÿ“Œ Reinforcement Learning (Basics):
โˆŸ Q-Learning
โˆŸ Deep Q Network (DQN)


๐Ÿ“Œ Ensemble Techniques:
โˆŸ Bagging (Random Forest)
โˆŸ Boosting (XGBoost, AdaBoost, Gradient Boosting)
โˆŸ Stacking

Donโ€™t forget to learn model evaluation metrics: accuracy, precision, recall, F1-score, AUC-ROC, confusion matrix, etc.

Free Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

React โค๏ธ for more free resources
โค4
๐—™๐—ฅ๐—˜๐—˜ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

๐Ÿš€ Learn In-Demand Tech Skills for Free โ€” Certified by Microsoft!

These free Microsoft-certified online courses are perfect for beginners, students, and professionals looking to upskill

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3Hio2Vg

Enroll For FREE & Get Certified๐ŸŽ“๏ธ
A-Z of essential data science concepts

A: Algorithm - A set of rules or instructions for solving a problem or completing a task.
B: Big Data - Large and complex datasets that traditional data processing applications are unable to handle efficiently.
C: Classification - A type of machine learning task that involves assigning labels to instances based on their characteristics.
D: Data Mining - The process of discovering patterns and extracting useful information from large datasets.
E: Ensemble Learning - A machine learning technique that combines multiple models to improve predictive performance.
F: Feature Engineering - The process of selecting, extracting, and transforming features from raw data to improve model performance.
G: Gradient Descent - An optimization algorithm used to minimize the error of a model by adjusting its parameters iteratively.
H: Hypothesis Testing - A statistical method used to make inferences about a population based on sample data.
I: Imputation - The process of replacing missing values in a dataset with estimated values.
J: Joint Probability - The probability of the intersection of two or more events occurring simultaneously.
K: K-Means Clustering - A popular unsupervised machine learning algorithm used for clustering data points into groups.
L: Logistic Regression - A statistical model used for binary classification tasks.
M: Machine Learning - A subset of artificial intelligence that enables systems to learn from data and improve performance over time.
N: Neural Network - A computer system inspired by the structure of the human brain, used for various machine learning tasks.
O: Outlier Detection - The process of identifying observations in a dataset that significantly deviate from the rest of the data points.
P: Precision and Recall - Evaluation metrics used to assess the performance of classification models.
Q: Quantitative Analysis - The process of using mathematical and statistical methods to analyze and interpret data.
R: Regression Analysis - A statistical technique used to model the relationship between a dependent variable and one or more independent variables.
S: Support Vector Machine - A supervised machine learning algorithm used for classification and regression tasks.
T: Time Series Analysis - The study of data collected over time to detect patterns, trends, and seasonal variations.
U: Unsupervised Learning - Machine learning techniques used to identify patterns and relationships in data without labeled outcomes.
V: Validation - The process of assessing the performance and generalization of a machine learning model using independent datasets.
W: Weka - A popular open-source software tool used for data mining and machine learning tasks.
X: XGBoost - An optimized implementation of gradient boosting that is widely used for classification and regression tasks.
Y: Yarn - A resource manager used in Apache Hadoop for managing resources across distributed clusters.
Z: Zero-Inflated Model - A statistical model used to analyze data with excess zeros, commonly found in count data.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
โค1
๐—™๐—ฅ๐—˜๐—˜ ๐—ง๐—”๐—ง๐—” ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ฉ๐—ถ๐—ฟ๐˜๐˜‚๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ป๐˜€๐—ต๐—ถ๐—ฝ๐Ÿ˜

Gain Real-World Data Analytics Experience with TATA โ€“ 100% Free!

This free TATA Data Analytics Virtual Internship on Forage lets you step into the shoes of a data analyst โ€” no experience required!

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3FyjDgp

Enroll For FREE & Get Certified๐ŸŽ“๏ธ
โค1
๐Ÿ”ฅ Data Science Roadmap 2025

Step 1: ๐Ÿ Python Basics
Step 2: ๐Ÿ“Š Data Analysis (Pandas, NumPy)
Step 3: ๐Ÿ“ˆ Data Visualization (Matplotlib, Seaborn)
Step 4: ๐Ÿค– Machine Learning (Scikit-learn)
Step 5: ๏ฟฝ Deep Learning (TensorFlow/PyTorch)
Step 6: ๐Ÿ—ƒ๏ธ SQL & Big Data (Spark)
Step 7: ๐Ÿš€ Deploy Models (Flask, FastAPI)
Step 8: ๐Ÿ“ข Showcase Projects
Step 9: ๐Ÿ’ผ Land a Job!

๐Ÿ”“ Pro Tip: Compete on Kaggle

#datascience
โค2