Forwarded from Artificial Intelligence
๐ง๐๐ฆ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐ข๐ป ๐๐ฎ๐๐ฎ ๐ ๐ฎ๐ป๐ฎ๐ด๐ฒ๐บ๐ฒ๐ป๐ - ๐๐ป๐ฟ๐ผ๐น๐น ๐๐ผ๐ฟ ๐๐ฅ๐๐๐
Want to know how top companies handle massive amounts of data without losing track? ๐
TCS is offering a FREE beginner-friendly course on Master Data Management, and yesโit comes with a certificate! ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jGFBw0
Just click and start learning!โ ๏ธ
Want to know how top companies handle massive amounts of data without losing track? ๐
TCS is offering a FREE beginner-friendly course on Master Data Management, and yesโit comes with a certificate! ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jGFBw0
Just click and start learning!โ ๏ธ
๐1
๐ ๐ฆ๐๐ฟ๐๐ด๐ด๐น๐ถ๐ป๐ด ๐๐ถ๐๐ต ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐? ๐๐ผ๐น๐น๐ผ๐ ๐ง๐ต๐ถ๐ ๐ฅ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ! ๐
Data Science interviews can be daunting, but with the right approach, you can ace them! If you're feeling overwhelmed, here's a roadmap to guide you through the process and help you succeed:
๐ ๐ญ. ๐จ๐ป๐ฑ๐ฒ๐ฟ๐๐๐ฎ๐ป๐ฑ ๐๐ต๐ฒ ๐๐ฎ๐๐ถ๐ฐ๐:
Master fundamental concepts like statistics, linear algebra, and probability. These are crucial for tackling both theoretical and practical questions.
๐ป ๐ฎ. ๐ช๐ผ๐ฟ๐ธ ๐ผ๐ป ๐ฅ๐ฒ๐ฎ๐น-๐ช๐ผ๐ฟ๐น๐ฑ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐:
Build a strong portfolio by solving real-world problems. Kaggle competitions, open datasets, and personal projects are great ways to gain hands-on experience.
๐ง ๐ฏ. ๐ฆ๐ต๐ฎ๐ฟ๐ฝ๐ฒ๐ป ๐ฌ๐ผ๐๐ฟ ๐๐ผ๐ฑ๐ถ๐ป๐ด ๐ฆ๐ธ๐ถ๐น๐น๐:
Coding is key in Data Science! Practice on platforms like LeetCode, HackerRank, or Codewars to boost your problem-solving ability and efficiency. Be comfortable with Python, SQL, and essential libraries.
๐ ๐ฐ. ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐๐ฎ๐๐ฎ ๐ช๐ฟ๐ฎ๐ป๐ด๐น๐ถ๐ป๐ด & ๐ฃ๐ฟ๐ฒ๐ฝ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด:
A significant portion of Data Science work revolves around cleaning and preparing data. Make sure you're comfortable with handling missing data, outliers, and feature engineering.
๐ ๐ฑ. ๐ฆ๐๐๐ฑ๐ ๐๐น๐ด๐ผ๐ฟ๐ถ๐๐ต๐บ๐ & ๐ ๐ผ๐ฑ๐ฒ๐น๐:
From decision trees to neural networks, ensure you understand how different models work and when to apply them. Know their strengths, weaknesses, and the mathematical principles behind them.
๐ฌ ๐ฒ. ๐๐บ๐ฝ๐ฟ๐ผ๐๐ฒ ๐๐ผ๐บ๐บ๐๐ป๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐ฆ๐ธ๐ถ๐น๐น๐:
Being able to explain complex concepts in a simple way is essential, especially when communicating with non-technical stakeholders. Practice explaining your findings and solutions clearly.
๐ ๐ณ. ๐ ๐ผ๐ฐ๐ธ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐ & ๐๐ฒ๐ฒ๐ฑ๐ฏ๐ฎ๐ฐ๐ธ:
Practice mock interviews with peers or mentors. Constructive feedback will help you identify areas of improvement and build confidence.
๐ ๐ด. ๐๐ฒ๐ฒ๐ฝ ๐จ๐ฝ ๐ช๐ถ๐๐ต ๐ง๐ฟ๐ฒ๐ป๐ฑ๐:
Data Science is a fast-evolving field! Stay updated on the latest techniques, tools, and industry trends to remain competitive.
๐ ๐ฃ๐ฟ๐ผ ๐ง๐ถ๐ฝ: Be persistent! Rejections are part of the journey, but every experience teaches you something new.
Data Science interviews can be daunting, but with the right approach, you can ace them! If you're feeling overwhelmed, here's a roadmap to guide you through the process and help you succeed:
๐ ๐ญ. ๐จ๐ป๐ฑ๐ฒ๐ฟ๐๐๐ฎ๐ป๐ฑ ๐๐ต๐ฒ ๐๐ฎ๐๐ถ๐ฐ๐:
Master fundamental concepts like statistics, linear algebra, and probability. These are crucial for tackling both theoretical and practical questions.
๐ป ๐ฎ. ๐ช๐ผ๐ฟ๐ธ ๐ผ๐ป ๐ฅ๐ฒ๐ฎ๐น-๐ช๐ผ๐ฟ๐น๐ฑ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐:
Build a strong portfolio by solving real-world problems. Kaggle competitions, open datasets, and personal projects are great ways to gain hands-on experience.
๐ง ๐ฏ. ๐ฆ๐ต๐ฎ๐ฟ๐ฝ๐ฒ๐ป ๐ฌ๐ผ๐๐ฟ ๐๐ผ๐ฑ๐ถ๐ป๐ด ๐ฆ๐ธ๐ถ๐น๐น๐:
Coding is key in Data Science! Practice on platforms like LeetCode, HackerRank, or Codewars to boost your problem-solving ability and efficiency. Be comfortable with Python, SQL, and essential libraries.
๐ ๐ฐ. ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐๐ฎ๐๐ฎ ๐ช๐ฟ๐ฎ๐ป๐ด๐น๐ถ๐ป๐ด & ๐ฃ๐ฟ๐ฒ๐ฝ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด:
A significant portion of Data Science work revolves around cleaning and preparing data. Make sure you're comfortable with handling missing data, outliers, and feature engineering.
๐ ๐ฑ. ๐ฆ๐๐๐ฑ๐ ๐๐น๐ด๐ผ๐ฟ๐ถ๐๐ต๐บ๐ & ๐ ๐ผ๐ฑ๐ฒ๐น๐:
From decision trees to neural networks, ensure you understand how different models work and when to apply them. Know their strengths, weaknesses, and the mathematical principles behind them.
๐ฌ ๐ฒ. ๐๐บ๐ฝ๐ฟ๐ผ๐๐ฒ ๐๐ผ๐บ๐บ๐๐ป๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐ฆ๐ธ๐ถ๐น๐น๐:
Being able to explain complex concepts in a simple way is essential, especially when communicating with non-technical stakeholders. Practice explaining your findings and solutions clearly.
๐ ๐ณ. ๐ ๐ผ๐ฐ๐ธ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐ & ๐๐ฒ๐ฒ๐ฑ๐ฏ๐ฎ๐ฐ๐ธ:
Practice mock interviews with peers or mentors. Constructive feedback will help you identify areas of improvement and build confidence.
๐ ๐ด. ๐๐ฒ๐ฒ๐ฝ ๐จ๐ฝ ๐ช๐ถ๐๐ต ๐ง๐ฟ๐ฒ๐ป๐ฑ๐:
Data Science is a fast-evolving field! Stay updated on the latest techniques, tools, and industry trends to remain competitive.
๐ ๐ฃ๐ฟ๐ผ ๐ง๐ถ๐ฝ: Be persistent! Rejections are part of the journey, but every experience teaches you something new.
Many people still aren't fully utilizing the power of Telegram.
There are numerous channels on Telegram that can help you find the latest job and internship opportunities?
Here are some of my top channel recommendations to help you get started ๐๐
Latest Jobs & Internships: https://t.iss.one/getjobss
Jobs Preparation Resources:
https://t.iss.one/jobinterviewsprep
Web Development Jobs:
https://t.iss.one/webdeveloperjob
Data Science Jobs:
https://t.iss.one/datasciencej
Interview Tips:
https://t.iss.one/Interview_Jobs
Data Analyst Jobs:
https://t.iss.one/jobs_SQL
AI Jobs:
https://t.iss.one/AIjobz
Remote Jobs:
https://t.iss.one/jobs_us_uk
FAANG Jobs:
https://t.iss.one/FAANGJob
Software Developer Jobs: https://t.iss.one/internshiptojobs
If you found this helpful, donโt forget to like, share, and follow for more resources that can boost your career journey!
Let me know if you know any other useful telegram channel
ENJOY LEARNING๐๐
There are numerous channels on Telegram that can help you find the latest job and internship opportunities?
Here are some of my top channel recommendations to help you get started ๐๐
Latest Jobs & Internships: https://t.iss.one/getjobss
Jobs Preparation Resources:
https://t.iss.one/jobinterviewsprep
Web Development Jobs:
https://t.iss.one/webdeveloperjob
Data Science Jobs:
https://t.iss.one/datasciencej
Interview Tips:
https://t.iss.one/Interview_Jobs
Data Analyst Jobs:
https://t.iss.one/jobs_SQL
AI Jobs:
https://t.iss.one/AIjobz
Remote Jobs:
https://t.iss.one/jobs_us_uk
FAANG Jobs:
https://t.iss.one/FAANGJob
Software Developer Jobs: https://t.iss.one/internshiptojobs
If you found this helpful, donโt forget to like, share, and follow for more resources that can boost your career journey!
Let me know if you know any other useful telegram channel
ENJOY LEARNING๐๐
๐1
Forwarded from Artificial Intelligence
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐ช๐ฒ๐ฏ๐๐ถ๐๐ฒ๐ ๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ป ๐ฃ๐๐๐ต๐ผ๐ป ๐ณ๐ฟ๐ผ๐บ ๐ฆ๐ฐ๐ฟ๐ฎ๐๐ฐ๐ต ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ (๐ก๐ผ ๐๐ป๐๐ฒ๐๐๐บ๐ฒ๐ป๐ ๐ก๐ฒ๐ฒ๐ฑ๐ฒ๐ฑ!)๐
If youโre serious about starting your tech journey, Python is one of the best languages to master๐จโ๐ป๐จโ๐
Iโve found 5 hidden gems that offer beginner tutorials, advanced exercises, and even real-world projects โ absolutely FREE๐ฅ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4lOVqmb
Start today, and youโll thank yourself tomorrow.โ ๏ธ
If youโre serious about starting your tech journey, Python is one of the best languages to master๐จโ๐ป๐จโ๐
Iโve found 5 hidden gems that offer beginner tutorials, advanced exercises, and even real-world projects โ absolutely FREE๐ฅ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4lOVqmb
Start today, and youโll thank yourself tomorrow.โ ๏ธ
๐1
Machine learning powers so many things around us โ from recommendation systems to self-driving cars!
But understanding the different types of algorithms can be tricky.
This is a quick and easy guide to the four main categories: Supervised, Unsupervised, Semi-Supervised, and Reinforcement Learning.
๐. ๐๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐
In supervised learning, the model learns from examples that already have the answers (labeled data). The goal is for the model to predict the correct result when given new data.
๐๐จ๐ฆ๐ ๐๐จ๐ฆ๐ฆ๐จ๐ง ๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ Linear Regression โ For predicting continuous values, like house prices.
โก๏ธ Logistic Regression โ For predicting categories, like spam or not spam.
โก๏ธ Decision Trees โ For making decisions in a step-by-step way.
โก๏ธ K-Nearest Neighbors (KNN) โ For finding similar data points.
โก๏ธ Random Forests โ A collection of decision trees for better accuracy.
โก๏ธ Neural Networks โ The foundation of deep learning, mimicking the human brain.
๐. ๐๐ง๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐
With unsupervised learning, the model explores patterns in data that doesnโt have any labels. It finds hidden structures or groupings.
๐๐จ๐ฆ๐ ๐ฉ๐จ๐ฉ๐ฎ๐ฅ๐๐ซ ๐ฎ๐ง๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ K-Means Clustering โ For grouping data into clusters.
โก๏ธ Hierarchical Clustering โ For building a tree of clusters.
โก๏ธ Principal Component Analysis (PCA) โ For reducing data to its most important parts.
โก๏ธ Autoencoders โ For finding simpler representations of data.
๐. ๐๐๐ฆ๐ข-๐๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐
This is a mix of supervised and unsupervised learning. It uses a small amount of labeled data with a large amount of unlabeled data to improve learning.
๐๐จ๐ฆ๐ฆ๐จ๐ง ๐ฌ๐๐ฆ๐ข-๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ Label Propagation โ For spreading labels through connected data points.
โก๏ธ Semi-Supervised SVM โ For combining labeled and unlabeled data.
โก๏ธ Graph-Based Methods โ For using graph structures to improve learning.
๐. ๐๐๐ข๐ง๐๐จ๐ซ๐๐๐ฆ๐๐ง๐ญ ๐๐๐๐ซ๐ง๐ข๐ง๐
In reinforcement learning, the model learns by trial and error. It interacts with its environment, receives feedback (rewards or penalties), and learns how to act to maximize rewards.
๐๐จ๐ฉ๐ฎ๐ฅ๐๐ซ ๐ซ๐๐ข๐ง๐๐จ๐ซ๐๐๐ฆ๐๐ง๐ญ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ Q-Learning โ For learning the best actions over time.
โก๏ธ Deep Q-Networks (DQN) โ Combining Q-learning with deep learning.
โก๏ธ Policy Gradient Methods โ For learning policies directly.
โก๏ธ Proximal Policy Optimization (PPO) โ For stable and effective learning.
ENJOY LEARNING ๐๐
But understanding the different types of algorithms can be tricky.
This is a quick and easy guide to the four main categories: Supervised, Unsupervised, Semi-Supervised, and Reinforcement Learning.
๐. ๐๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐
In supervised learning, the model learns from examples that already have the answers (labeled data). The goal is for the model to predict the correct result when given new data.
๐๐จ๐ฆ๐ ๐๐จ๐ฆ๐ฆ๐จ๐ง ๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ Linear Regression โ For predicting continuous values, like house prices.
โก๏ธ Logistic Regression โ For predicting categories, like spam or not spam.
โก๏ธ Decision Trees โ For making decisions in a step-by-step way.
โก๏ธ K-Nearest Neighbors (KNN) โ For finding similar data points.
โก๏ธ Random Forests โ A collection of decision trees for better accuracy.
โก๏ธ Neural Networks โ The foundation of deep learning, mimicking the human brain.
๐. ๐๐ง๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐
With unsupervised learning, the model explores patterns in data that doesnโt have any labels. It finds hidden structures or groupings.
๐๐จ๐ฆ๐ ๐ฉ๐จ๐ฉ๐ฎ๐ฅ๐๐ซ ๐ฎ๐ง๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ K-Means Clustering โ For grouping data into clusters.
โก๏ธ Hierarchical Clustering โ For building a tree of clusters.
โก๏ธ Principal Component Analysis (PCA) โ For reducing data to its most important parts.
โก๏ธ Autoencoders โ For finding simpler representations of data.
๐. ๐๐๐ฆ๐ข-๐๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐
This is a mix of supervised and unsupervised learning. It uses a small amount of labeled data with a large amount of unlabeled data to improve learning.
๐๐จ๐ฆ๐ฆ๐จ๐ง ๐ฌ๐๐ฆ๐ข-๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ Label Propagation โ For spreading labels through connected data points.
โก๏ธ Semi-Supervised SVM โ For combining labeled and unlabeled data.
โก๏ธ Graph-Based Methods โ For using graph structures to improve learning.
๐. ๐๐๐ข๐ง๐๐จ๐ซ๐๐๐ฆ๐๐ง๐ญ ๐๐๐๐ซ๐ง๐ข๐ง๐
In reinforcement learning, the model learns by trial and error. It interacts with its environment, receives feedback (rewards or penalties), and learns how to act to maximize rewards.
๐๐จ๐ฉ๐ฎ๐ฅ๐๐ซ ๐ซ๐๐ข๐ง๐๐จ๐ซ๐๐๐ฆ๐๐ง๐ญ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ Q-Learning โ For learning the best actions over time.
โก๏ธ Deep Q-Networks (DQN) โ Combining Q-learning with deep learning.
โก๏ธ Policy Gradient Methods โ For learning policies directly.
โก๏ธ Proximal Policy Optimization (PPO) โ For stable and effective learning.
ENJOY LEARNING ๐๐
๐2
Probability for Data Science
โค2๐1
๐๐ผ๐ผ๐ด๐น๐ฒ ๐๐ฅ๐๐ ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
Ever wondered how machines describe images in words?๐ป
Want to get hands-on with cutting-edge AI and computer vision โ for FREE?๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42FaT0Y
๐ฏ Start Learning AI for FREE
Ever wondered how machines describe images in words?๐ป
Want to get hands-on with cutting-edge AI and computer vision โ for FREE?๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42FaT0Y
๐ฏ Start Learning AI for FREE
๐2
Forwarded from Generative AI
๐ณ ๐๐ฟ๐ฒ๐ฒ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐จ๐ฝ๐ด๐ฟ๐ฎ๐ฑ๐ฒ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
๐ผ Want to Upgrade Your Resume in 2025 โ Without Spending a Dime?๐ซ
Whether youโre in tech, marketing, business, or just looking to stand out โ adding high-quality certifications to your resume can make a huge difference๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4iE6uzT
The best part? You donโt need to spend any money to do it๐ฐ๐
๐ผ Want to Upgrade Your Resume in 2025 โ Without Spending a Dime?๐ซ
Whether youโre in tech, marketing, business, or just looking to stand out โ adding high-quality certifications to your resume can make a huge difference๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4iE6uzT
The best part? You donโt need to spend any money to do it๐ฐ๐
๐3โค1
๐๐ผ๐ ๐๐ผ ๐๐ฒ๐ฐ๐ผ๐บ๐ฒ ๐ฎ ๐๐ผ๐ฏ-๐ฅ๐ฒ๐ฎ๐ฑ๐ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐ ๐ณ๐ฟ๐ผ๐บ ๐ฆ๐ฐ๐ฟ๐ฎ๐๐ฐ๐ต (๐๐๐ฒ๐ป ๐ถ๐ณ ๐ฌ๐ผ๐โ๐ฟ๐ฒ ๐ฎ ๐๐ฒ๐ด๐ถ๐ป๐ป๐ฒ๐ฟ!) ๐
Wanna break into data science but feel overwhelmed by too many courses, buzzwords, and conflicting advice? Youโre not alone.
Hereโs the truth: You donโt need a PhD or 10 certifications. You just need the right skills in the right order.
Let me show you a proven 5-step roadmap that actually works for landing data science roles (even entry-level) ๐
๐น Step 1: Learn the Core Tools (This is Your Foundation)
Focus on 3 key tools firstโdonโt overcomplicate:
โ Python โ NumPy, Pandas, Matplotlib, Seaborn
โ SQL โ Joins, Aggregations, Window Functions
โ Excel โ VLOOKUP, Pivot Tables, Data Cleaning
๐น Step 2: Master Data Cleaning & EDA (Your Real-World Skill)
Real data is messy. Learn how to:
โ Handle missing data, outliers, and duplicates
โ Visualize trends using Matplotlib/Seaborn
โ Use groupby(), merge(), and pivot_table()
๐น Step 3: Learn ML Basics (No Fancy Math Needed)
Stick to core algorithms first:
โ Linear & Logistic Regression
โ Decision Trees & Random Forest
โ KMeans Clustering + Model Evaluation Metrics
๐น Step 4: Build Projects That Prove Your Skills
One strong project > 5 courses. Create:
โ Sales Forecasting using Time Series
โ Movie Recommendation System
โ HR Analytics Dashboard using Python + Excel
๐ Upload them on GitHub. Add visuals, write a good README, and share on LinkedIn.
๐น Step 5: Prep for the Job Hunt (Your Personal Brand Matters)
โ Create a strong LinkedIn profile with keywords like โAspiring Data Scientist | Python | SQL | MLโ
โ Add GitHub link + Highlight your Projects
โ Follow Data Science mentors, engage with content, and network for referrals
๐ฏ No shortcuts. Just consistent baby steps.
Every pro data scientist once started as a beginner. Stay curious, stay consistent.
Free Data Science Resources: https://whatsapp.com/channel/0029VauCKUI6WaKrgTHrRD0i
ENJOY LEARNING ๐๐
Wanna break into data science but feel overwhelmed by too many courses, buzzwords, and conflicting advice? Youโre not alone.
Hereโs the truth: You donโt need a PhD or 10 certifications. You just need the right skills in the right order.
Let me show you a proven 5-step roadmap that actually works for landing data science roles (even entry-level) ๐
๐น Step 1: Learn the Core Tools (This is Your Foundation)
Focus on 3 key tools firstโdonโt overcomplicate:
โ Python โ NumPy, Pandas, Matplotlib, Seaborn
โ SQL โ Joins, Aggregations, Window Functions
โ Excel โ VLOOKUP, Pivot Tables, Data Cleaning
๐น Step 2: Master Data Cleaning & EDA (Your Real-World Skill)
Real data is messy. Learn how to:
โ Handle missing data, outliers, and duplicates
โ Visualize trends using Matplotlib/Seaborn
โ Use groupby(), merge(), and pivot_table()
๐น Step 3: Learn ML Basics (No Fancy Math Needed)
Stick to core algorithms first:
โ Linear & Logistic Regression
โ Decision Trees & Random Forest
โ KMeans Clustering + Model Evaluation Metrics
๐น Step 4: Build Projects That Prove Your Skills
One strong project > 5 courses. Create:
โ Sales Forecasting using Time Series
โ Movie Recommendation System
โ HR Analytics Dashboard using Python + Excel
๐ Upload them on GitHub. Add visuals, write a good README, and share on LinkedIn.
๐น Step 5: Prep for the Job Hunt (Your Personal Brand Matters)
โ Create a strong LinkedIn profile with keywords like โAspiring Data Scientist | Python | SQL | MLโ
โ Add GitHub link + Highlight your Projects
โ Follow Data Science mentors, engage with content, and network for referrals
๐ฏ No shortcuts. Just consistent baby steps.
Every pro data scientist once started as a beginner. Stay curious, stay consistent.
Free Data Science Resources: https://whatsapp.com/channel/0029VauCKUI6WaKrgTHrRD0i
ENJOY LEARNING ๐๐
๐6๐ฅ2
Forwarded from Python Projects & Resources
๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
Whether youโre a student, fresher, or professional looking to upskill โ Microsoft has dropped a series of completely free courses to get you started.
Learn SQL ,Power BI & More In 2025
๐๐ถ๐ป๐ธ:-๐
https://pdlink.in/42FxnyM
Enroll For FREE & Get Certified ๐
Whether youโre a student, fresher, or professional looking to upskill โ Microsoft has dropped a series of completely free courses to get you started.
Learn SQL ,Power BI & More In 2025
๐๐ถ๐ป๐ธ:-๐
https://pdlink.in/42FxnyM
Enroll For FREE & Get Certified ๐
๐1
Essential Topics to Master Data Science Interviews: ๐
SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some โค๏ธ if you're ready to elevate your data science journey! ๐
ENJOY LEARNING ๐๐
SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some โค๏ธ if you're ready to elevate your data science journey! ๐
ENJOY LEARNING ๐๐
โค2๐2
Forwarded from Python Projects & Resources
๐ฒ ๐๐ฟ๐ฒ๐ฒ ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ผ ๐จ๐ฝ๐๐ธ๐ถ๐น๐น ๐๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Whether youโre a student, aspiring data analyst, software enthusiast, or just curious about AI, nowโs the perfect time to dive in.
These 6 beginner-friendly and completely free AI courses from top institutions like Google, IBM, Harvard, and more
๐๐ถ๐ป๐ธ:-๐
https://pdlink.in/4d0SrTG
Enroll for FREE & Get Certified ๐
Whether youโre a student, aspiring data analyst, software enthusiast, or just curious about AI, nowโs the perfect time to dive in.
These 6 beginner-friendly and completely free AI courses from top institutions like Google, IBM, Harvard, and more
๐๐ถ๐ป๐ธ:-๐
https://pdlink.in/4d0SrTG
Enroll for FREE & Get Certified ๐
๐1