Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence
37.7K subscribers
283 photos
76 files
337 links
Free Datasets For Data Science Projects & Portfolio

Buy ads: https://telega.io/c/DataPortfolio

For Promotions/ads: @coderfun @love_data
Download Telegram
Forwarded from Artificial Intelligence
๐—ง๐—–๐—ฆ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ข๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐— ๐—ฎ๐—ป๐—ฎ๐—ด๐—ฒ๐—บ๐—ฒ๐—ป๐˜ - ๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ˜

Want to know how top companies handle massive amounts of data without losing track? ๐Ÿ“Š

TCS is offering a FREE beginner-friendly course on Master Data Management, and yesโ€”it comes with a certificate! ๐ŸŽ“

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4jGFBw0

Just click and start learning!โœ…๏ธ
๐Ÿ‘1
๐Ÿš€ ๐—ฆ๐˜๐—ฟ๐˜‚๐—ด๐—ด๐—น๐—ถ๐—ป๐—ด ๐˜„๐—ถ๐˜๐—ต ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐˜€? ๐—™๐—ผ๐—น๐—น๐—ผ๐˜„ ๐—ง๐—ต๐—ถ๐˜€ ๐—ฅ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ! ๐Ÿš€

Data Science interviews can be daunting, but with the right approach, you can ace them! If you're feeling overwhelmed, here's a roadmap to guide you through the process and help you succeed:

๐Ÿ” ๐Ÿญ. ๐—จ๐—ป๐—ฑ๐—ฒ๐—ฟ๐˜€๐˜๐—ฎ๐—ป๐—ฑ ๐˜๐—ต๐—ฒ ๐—•๐—ฎ๐˜€๐—ถ๐—ฐ๐˜€:
Master fundamental concepts like statistics, linear algebra, and probability. These are crucial for tackling both theoretical and practical questions.

๐Ÿ’ป ๐Ÿฎ. ๐—ช๐—ผ๐—ฟ๐—ธ ๐—ผ๐—ป ๐—ฅ๐—ฒ๐—ฎ๐—น-๐—ช๐—ผ๐—ฟ๐—น๐—ฑ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€:
Build a strong portfolio by solving real-world problems. Kaggle competitions, open datasets, and personal projects are great ways to gain hands-on experience.

๐Ÿง  ๐Ÿฏ. ๐—ฆ๐—ต๐—ฎ๐—ฟ๐—ฝ๐—ฒ๐—ป ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ผ๐—ฑ๐—ถ๐—ป๐—ด ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€:
Coding is key in Data Science! Practice on platforms like LeetCode, HackerRank, or Codewars to boost your problem-solving ability and efficiency. Be comfortable with Python, SQL, and essential libraries.

๐Ÿ“Š ๐Ÿฐ. ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ช๐—ฟ๐—ฎ๐—ป๐—ด๐—น๐—ถ๐—ป๐—ด & ๐—ฃ๐—ฟ๐—ฒ๐—ฝ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด:
A significant portion of Data Science work revolves around cleaning and preparing data. Make sure you're comfortable with handling missing data, outliers, and feature engineering.

๐Ÿ“š ๐Ÿฑ. ๐—ฆ๐˜๐˜‚๐—ฑ๐˜† ๐—”๐—น๐—ด๐—ผ๐—ฟ๐—ถ๐˜๐—ต๐—บ๐˜€ & ๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€:
From decision trees to neural networks, ensure you understand how different models work and when to apply them. Know their strengths, weaknesses, and the mathematical principles behind them.

๐Ÿ’ฌ ๐Ÿฒ. ๐—œ๐—บ๐—ฝ๐—ฟ๐—ผ๐˜ƒ๐—ฒ ๐—–๐—ผ๐—บ๐—บ๐˜‚๐—ป๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€:
Being able to explain complex concepts in a simple way is essential, especially when communicating with non-technical stakeholders. Practice explaining your findings and solutions clearly.

๐Ÿ”„ ๐Ÿณ. ๐— ๐—ผ๐—ฐ๐—ธ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐˜€ & ๐—™๐—ฒ๐—ฒ๐—ฑ๐—ฏ๐—ฎ๐—ฐ๐—ธ:
Practice mock interviews with peers or mentors. Constructive feedback will help you identify areas of improvement and build confidence.

๐Ÿ“ˆ ๐Ÿด. ๐—ž๐—ฒ๐—ฒ๐—ฝ ๐—จ๐—ฝ ๐—ช๐—ถ๐˜๐—ต ๐—ง๐—ฟ๐—ฒ๐—ป๐—ฑ๐˜€:
Data Science is a fast-evolving field! Stay updated on the latest techniques, tools, and industry trends to remain competitive.

๐Ÿ‘‰ ๐—ฃ๐—ฟ๐—ผ ๐—ง๐—ถ๐—ฝ: Be persistent! Rejections are part of the journey, but every experience teaches you something new.
Many people still aren't fully utilizing the power of Telegram.

There are numerous channels on Telegram that can help you find the latest job and internship opportunities?

Here are some of my top channel recommendations to help you get started ๐Ÿ‘‡๐Ÿ‘‡

Latest Jobs & Internships: https://t.iss.one/getjobss

Jobs Preparation Resources:
https://t.iss.one/jobinterviewsprep

Web Development Jobs:
https://t.iss.one/webdeveloperjob

Data Science Jobs:
https://t.iss.one/datasciencej

Interview Tips:
https://t.iss.one/Interview_Jobs

Data Analyst Jobs:
https://t.iss.one/jobs_SQL

AI Jobs:
https://t.iss.one/AIjobz

Remote Jobs:
https://t.iss.one/jobs_us_uk

FAANG Jobs:
https://t.iss.one/FAANGJob

Software Developer Jobs: https://t.iss.one/internshiptojobs

If you found this helpful, donโ€™t forget to like, share, and follow for more resources that can boost your career journey!

Let me know if you know any other useful telegram channel

ENJOY LEARNING๐Ÿ‘๐Ÿ‘
๐Ÿ‘1
jscheatsheet.pdf
1.4 MB
Javascript Cheatsheet โœจ๏ธ
๐Ÿ‘1๐Ÿ”ฅ1
Forwarded from Artificial Intelligence
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ช๐—ฒ๐—ฏ๐˜€๐—ถ๐˜๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฆ๐—ฐ๐—ฟ๐—ฎ๐˜๐—ฐ๐—ต ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ (๐—ก๐—ผ ๐—œ๐—ป๐˜ƒ๐—ฒ๐˜€๐˜๐—บ๐—ฒ๐—ป๐˜ ๐—ก๐—ฒ๐—ฒ๐—ฑ๐—ฒ๐—ฑ!)๐Ÿ˜

If youโ€™re serious about starting your tech journey, Python is one of the best languages to master๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ‘จโ€๐ŸŽ“

Iโ€™ve found 5 hidden gems that offer beginner tutorials, advanced exercises, and even real-world projects โ€” absolutely FREE๐Ÿ”ฅ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4lOVqmb

Start today, and youโ€™ll thank yourself tomorrow.โœ…๏ธ
๐Ÿ‘1
Machine learning powers so many things around us โ€“ from recommendation systems to self-driving cars!

But understanding the different types of algorithms can be tricky.

This is a quick and easy guide to the four main categories: Supervised, Unsupervised, Semi-Supervised, and Reinforcement Learning.

๐Ÿ. ๐’๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ 
In supervised learning, the model learns from examples that already have the answers (labeled data). The goal is for the model to predict the correct result when given new data.

๐’๐จ๐ฆ๐ž ๐œ๐จ๐ฆ๐ฆ๐จ๐ง ๐ฌ๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐š๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐œ๐ฅ๐ฎ๐๐ž:

โžก๏ธ Linear Regression โ€“ For predicting continuous values, like house prices.
โžก๏ธ Logistic Regression โ€“ For predicting categories, like spam or not spam.
โžก๏ธ Decision Trees โ€“ For making decisions in a step-by-step way.
โžก๏ธ K-Nearest Neighbors (KNN) โ€“ For finding similar data points.
โžก๏ธ Random Forests โ€“ A collection of decision trees for better accuracy.
โžก๏ธ Neural Networks โ€“ The foundation of deep learning, mimicking the human brain.

๐Ÿ. ๐”๐ง๐ฌ๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ 
With unsupervised learning, the model explores patterns in data that doesnโ€™t have any labels. It finds hidden structures or groupings.

๐’๐จ๐ฆ๐ž ๐ฉ๐จ๐ฉ๐ฎ๐ฅ๐š๐ซ ๐ฎ๐ง๐ฌ๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐š๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐œ๐ฅ๐ฎ๐๐ž:

โžก๏ธ K-Means Clustering โ€“ For grouping data into clusters.
โžก๏ธ Hierarchical Clustering โ€“ For building a tree of clusters.
โžก๏ธ Principal Component Analysis (PCA) โ€“ For reducing data to its most important parts.
โžก๏ธ Autoencoders โ€“ For finding simpler representations of data.

๐Ÿ‘. ๐’๐ž๐ฆ๐ข-๐’๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ 
This is a mix of supervised and unsupervised learning. It uses a small amount of labeled data with a large amount of unlabeled data to improve learning.

๐‚๐จ๐ฆ๐ฆ๐จ๐ง ๐ฌ๐ž๐ฆ๐ข-๐ฌ๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐š๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐œ๐ฅ๐ฎ๐๐ž:

โžก๏ธ Label Propagation โ€“ For spreading labels through connected data points.
โžก๏ธ Semi-Supervised SVM โ€“ For combining labeled and unlabeled data.
โžก๏ธ Graph-Based Methods โ€“ For using graph structures to improve learning.

๐Ÿ’. ๐‘๐ž๐ข๐ง๐Ÿ๐จ๐ซ๐œ๐ž๐ฆ๐ž๐ง๐ญ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ 
In reinforcement learning, the model learns by trial and error. It interacts with its environment, receives feedback (rewards or penalties), and learns how to act to maximize rewards.

๐๐จ๐ฉ๐ฎ๐ฅ๐š๐ซ ๐ซ๐ž๐ข๐ง๐Ÿ๐จ๐ซ๐œ๐ž๐ฆ๐ž๐ง๐ญ ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐š๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐œ๐ฅ๐ฎ๐๐ž:

โžก๏ธ Q-Learning โ€“ For learning the best actions over time.
โžก๏ธ Deep Q-Networks (DQN) โ€“ Combining Q-learning with deep learning.
โžก๏ธ Policy Gradient Methods โ€“ For learning policies directly.
โžก๏ธ Proximal Policy Optimization (PPO) โ€“ For stable and effective learning.

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘2
๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—™๐—ฅ๐—˜๐—˜ ๐—”๐—œ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

Ever wondered how machines describe images in words?๐Ÿ’ป

Want to get hands-on with cutting-edge AI and computer vision โ€” for FREE?๐ŸŽŠ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/42FaT0Y

๐ŸŽฏ Start Learning AI for FREE
๐Ÿ‘2
Libraries for Data Science in Python
โค5
Forwarded from Generative AI
๐Ÿณ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—จ๐—ฝ๐—ด๐—ฟ๐—ฎ๐—ฑ๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

๐Ÿ’ผ Want to Upgrade Your Resume in 2025 โ€” Without Spending a Dime?๐Ÿ’ซ

Whether youโ€™re in tech, marketing, business, or just looking to stand out โ€” adding high-quality certifications to your resume can make a huge difference๐Ÿ“„

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4iE6uzT

The best part? You donโ€™t need to spend any money to do it๐Ÿ’ฐ๐Ÿ“Œ
๐Ÿ‘3โค1
๐—›๐—ผ๐˜„ ๐˜๐—ผ ๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ ๐—๐—ผ๐—ฏ-๐—ฅ๐—ฒ๐—ฎ๐—ฑ๐˜† ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฆ๐—ฐ๐—ฟ๐—ฎ๐˜๐—ฐ๐—ต (๐—˜๐˜ƒ๐—ฒ๐—ป ๐—ถ๐—ณ ๐—ฌ๐—ผ๐˜‚โ€™๐—ฟ๐—ฒ ๐—ฎ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ!) ๐Ÿ“Š

Wanna break into data science but feel overwhelmed by too many courses, buzzwords, and conflicting advice? Youโ€™re not alone.

Hereโ€™s the truth: You donโ€™t need a PhD or 10 certifications. You just need the right skills in the right order.

Let me show you a proven 5-step roadmap that actually works for landing data science roles (even entry-level) ๐Ÿ‘‡

๐Ÿ”น Step 1: Learn the Core Tools (This is Your Foundation)

Focus on 3 key tools firstโ€”donโ€™t overcomplicate:

โœ… Python โ€“ NumPy, Pandas, Matplotlib, Seaborn
โœ… SQL โ€“ Joins, Aggregations, Window Functions
โœ… Excel โ€“ VLOOKUP, Pivot Tables, Data Cleaning

๐Ÿ”น Step 2: Master Data Cleaning & EDA (Your Real-World Skill)

Real data is messy. Learn how to:

โœ… Handle missing data, outliers, and duplicates
โœ… Visualize trends using Matplotlib/Seaborn
โœ… Use groupby(), merge(), and pivot_table()

๐Ÿ”น Step 3: Learn ML Basics (No Fancy Math Needed)

Stick to core algorithms first:

โœ… Linear & Logistic Regression
โœ… Decision Trees & Random Forest
โœ… KMeans Clustering + Model Evaluation Metrics

๐Ÿ”น Step 4: Build Projects That Prove Your Skills

One strong project > 5 courses. Create:

โœ… Sales Forecasting using Time Series
โœ… Movie Recommendation System
โœ… HR Analytics Dashboard using Python + Excel
๐Ÿ“ Upload them on GitHub. Add visuals, write a good README, and share on LinkedIn.

๐Ÿ”น Step 5: Prep for the Job Hunt (Your Personal Brand Matters)

โœ… Create a strong LinkedIn profile with keywords like โ€œAspiring Data Scientist | Python | SQL | MLโ€
โœ… Add GitHub link + Highlight your Projects
โœ… Follow Data Science mentors, engage with content, and network for referrals

๐ŸŽฏ No shortcuts. Just consistent baby steps.

Every pro data scientist once started as a beginner. Stay curious, stay consistent.

Free Data Science Resources: https://whatsapp.com/channel/0029VauCKUI6WaKrgTHrRD0i

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘6๐Ÿ”ฅ2
๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

Whether youโ€™re a student, fresher, or professional looking to upskill โ€” Microsoft has dropped a series of completely free courses to get you started.

Learn SQL ,Power BI & More In 2025 

๐—Ÿ๐—ถ๐—ป๐—ธ:-๐Ÿ‘‡

https://pdlink.in/42FxnyM

Enroll For FREE & Get Certified ๐ŸŽ“
๐Ÿ‘1
Essential Topics to Master Data Science Interviews: ๐Ÿš€

SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables

2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries

3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)

Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages

2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets

3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)

Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting

2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)

3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards

Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)

2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX

3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes

Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.

Show some โค๏ธ if you're ready to elevate your data science journey! ๐Ÿ“Š

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค2๐Ÿ‘2
๐Ÿฒ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—”๐—œ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ง๐—ผ ๐—จ๐—ฝ๐˜€๐—ธ๐—ถ๐—น๐—น ๐—œ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Whether youโ€™re a student, aspiring data analyst, software enthusiast, or just curious about AI, nowโ€™s the perfect time to dive in.

These 6 beginner-friendly and completely free AI courses from top institutions like Google, IBM, Harvard, and more

๐—Ÿ๐—ถ๐—ป๐—ธ:-๐Ÿ‘‡

https://pdlink.in/4d0SrTG

Enroll for FREE & Get Certified ๐ŸŽ“
๐Ÿ‘1