Forwarded from Python Projects & Resources
๐ฐ ๐๐ฅ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ฏ๐ ๐๐ฎ๐ฟ๐๐ฎ๐ฟ๐ฑ ๐ฎ๐ป๐ฑ ๐ฆ๐๐ฎ๐ป๐ณ๐ผ๐ฟ๐ฑ ๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ป ๐๐๐
Dreaming of Mastering AI? ๐ฏ
Harvard and Stanfordโtwo of the most prestigious universities in the worldโare offering FREE AI courses๐จโ๐ป
No hidden fees, no long applicationsโjust pure, world-class education, accessible to everyone๐ฅ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3GqHkau
Hereโs your golden ticket to the future!โ
Dreaming of Mastering AI? ๐ฏ
Harvard and Stanfordโtwo of the most prestigious universities in the worldโare offering FREE AI courses๐จโ๐ป
No hidden fees, no long applicationsโjust pure, world-class education, accessible to everyone๐ฅ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3GqHkau
Hereโs your golden ticket to the future!โ
๐1
Important Topics to become a data scientist [Advanced Level]
๐๐
1. Mathematics
Linear Algebra
Analytic Geometry
Matrix
Vector Calculus
Optimization
Regression
Dimensionality Reduction
Density Estimation
Classification
2. Probability
Introduction to Probability
1D Random Variable
The function of One Random Variable
Joint Probability Distribution
Discrete Distribution
Normal Distribution
3. Statistics
Introduction to Statistics
Data Description
Random Samples
Sampling Distribution
Parameter Estimation
Hypotheses Testing
Regression
4. Programming
Python:
Python Basics
List
Set
Tuples
Dictionary
Function
NumPy
Pandas
Matplotlib/Seaborn
R Programming:
R Basics
Vector
List
Data Frame
Matrix
Array
Function
dplyr
ggplot2
Tidyr
Shiny
DataBase:
SQL
MongoDB
Data Structures
Web scraping
Linux
Git
5. Machine Learning
How Model Works
Basic Data Exploration
First ML Model
Model Validation
Underfitting & Overfitting
Random Forest
Handling Missing Values
Handling Categorical Variables
Pipelines
Cross-Validation(R)
XGBoost(Python|R)
Data Leakage
6. Deep Learning
Artificial Neural Network
Convolutional Neural Network
Recurrent Neural Network
TensorFlow
Keras
PyTorch
A Single Neuron
Deep Neural Network
Stochastic Gradient Descent
Overfitting and Underfitting
Dropout Batch Normalization
Binary Classification
7. Feature Engineering
Baseline Model
Categorical Encodings
Feature Generation
Feature Selection
8. Natural Language Processing
Text Classification
Word Vectors
9. Data Visualization Tools
BI (Business Intelligence):
Tableau
Power BI
Qlik View
Qlik Sense
10. Deployment
Microsoft Azure
Heroku
Google Cloud Platform
Flask
Django
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
๐๐
1. Mathematics
Linear Algebra
Analytic Geometry
Matrix
Vector Calculus
Optimization
Regression
Dimensionality Reduction
Density Estimation
Classification
2. Probability
Introduction to Probability
1D Random Variable
The function of One Random Variable
Joint Probability Distribution
Discrete Distribution
Normal Distribution
3. Statistics
Introduction to Statistics
Data Description
Random Samples
Sampling Distribution
Parameter Estimation
Hypotheses Testing
Regression
4. Programming
Python:
Python Basics
List
Set
Tuples
Dictionary
Function
NumPy
Pandas
Matplotlib/Seaborn
R Programming:
R Basics
Vector
List
Data Frame
Matrix
Array
Function
dplyr
ggplot2
Tidyr
Shiny
DataBase:
SQL
MongoDB
Data Structures
Web scraping
Linux
Git
5. Machine Learning
How Model Works
Basic Data Exploration
First ML Model
Model Validation
Underfitting & Overfitting
Random Forest
Handling Missing Values
Handling Categorical Variables
Pipelines
Cross-Validation(R)
XGBoost(Python|R)
Data Leakage
6. Deep Learning
Artificial Neural Network
Convolutional Neural Network
Recurrent Neural Network
TensorFlow
Keras
PyTorch
A Single Neuron
Deep Neural Network
Stochastic Gradient Descent
Overfitting and Underfitting
Dropout Batch Normalization
Binary Classification
7. Feature Engineering
Baseline Model
Categorical Encodings
Feature Generation
Feature Selection
8. Natural Language Processing
Text Classification
Word Vectors
9. Data Visualization Tools
BI (Business Intelligence):
Tableau
Power BI
Qlik View
Qlik Sense
10. Deployment
Microsoft Azure
Heroku
Google Cloud Platform
Flask
Django
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
๐3
Forwarded from Generative AI
๐๐ฅ๐๐ ๐๐ผ๐ผ๐ด๐น๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ฃ๐ฎ๐๐ต! ๐๐ฒ๐ฐ๐ผ๐บ๐ฒ ๐ฎ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฒ๐ฑ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
If youโre dreaming of starting a high-paying data career or switching into the booming tech industry, Google just made it a whole lot easier โ and itโs completely FREE๐จโ๐ป
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4cMx2h2
Youโll get access to hands-on labs, real datasets, and industry-grade training created directly by Googleโs own experts๐ป
If youโre dreaming of starting a high-paying data career or switching into the booming tech industry, Google just made it a whole lot easier โ and itโs completely FREE๐จโ๐ป
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4cMx2h2
Youโll get access to hands-on labs, real datasets, and industry-grade training created directly by Googleโs own experts๐ป
๐2
Please go through this top 5 SQL projects with Datasets that you can practice and can add in your resume
๐1. Web Analytics:
(https://www.kaggle.com/zynicide/wine-reviews)
๐2. Healthcare Data Analysis:
(https://www.kaggle.com/cdc/mortality)
๐3. E-commerce Analysis:
(https://www.kaggle.com/olistbr/brazilian-ecommerce)
๐4. Inventory Management:
(https://www.kaggle.com/code/govindji/inventory-management)
๐ 5. Analysis of Sales Data:
(https://www.kaggle.com/kyanyoga/sample-sales-data)
Small suggestion from my side for non tech students: kindly pick those datasets which you like the subject in general, that way you will be more excited to practice it, instead of just doing it for the sake of resume, you will learn SQL more passionately, since itโs a programming language try to make it more exciting for yourself.
Hope this piece of information helps you
๐1. Web Analytics:
(https://www.kaggle.com/zynicide/wine-reviews)
๐2. Healthcare Data Analysis:
(https://www.kaggle.com/cdc/mortality)
๐3. E-commerce Analysis:
(https://www.kaggle.com/olistbr/brazilian-ecommerce)
๐4. Inventory Management:
(https://www.kaggle.com/code/govindji/inventory-management)
๐ 5. Analysis of Sales Data:
(https://www.kaggle.com/kyanyoga/sample-sales-data)
Small suggestion from my side for non tech students: kindly pick those datasets which you like the subject in general, that way you will be more excited to practice it, instead of just doing it for the sake of resume, you will learn SQL more passionately, since itโs a programming language try to make it more exciting for yourself.
Hope this piece of information helps you
๐2
๐๐ฒ๐๐ ๐ฌ๐ผ๐๐ง๐๐ฏ๐ฒ ๐๐ต๐ฎ๐ป๐ป๐ฒ๐น๐ ๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ป ๐๐๐๐ฒ๐ป๐๐ถ๐ฎ๐น ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ฆ๐ธ๐ถ๐น๐น๐ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐๐
Dreaming of becoming a Data Analyst but feel overwhelmed by where to start?๐จโ๐ป
Hereโs the truth: YouTube is packed with goldmine content, and the best part โ itโs all 100% FREE๐ฅ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4cL3SyM
๐ If Youโre Serious About Data Analytics, You Canโt Sleep on These YouTube Channels!
Dreaming of becoming a Data Analyst but feel overwhelmed by where to start?๐จโ๐ป
Hereโs the truth: YouTube is packed with goldmine content, and the best part โ itโs all 100% FREE๐ฅ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4cL3SyM
๐ If Youโre Serious About Data Analytics, You Canโt Sleep on These YouTube Channels!
๐1
Forwarded from Artificial Intelligence
๐ง๐๐ฆ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐ข๐ป ๐๐ฎ๐๐ฎ ๐ ๐ฎ๐ป๐ฎ๐ด๐ฒ๐บ๐ฒ๐ป๐ - ๐๐ป๐ฟ๐ผ๐น๐น ๐๐ผ๐ฟ ๐๐ฅ๐๐๐
Want to know how top companies handle massive amounts of data without losing track? ๐
TCS is offering a FREE beginner-friendly course on Master Data Management, and yesโit comes with a certificate! ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jGFBw0
Just click and start learning!โ ๏ธ
Want to know how top companies handle massive amounts of data without losing track? ๐
TCS is offering a FREE beginner-friendly course on Master Data Management, and yesโit comes with a certificate! ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jGFBw0
Just click and start learning!โ ๏ธ
๐1
๐ ๐ฆ๐๐ฟ๐๐ด๐ด๐น๐ถ๐ป๐ด ๐๐ถ๐๐ต ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐? ๐๐ผ๐น๐น๐ผ๐ ๐ง๐ต๐ถ๐ ๐ฅ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ! ๐
Data Science interviews can be daunting, but with the right approach, you can ace them! If you're feeling overwhelmed, here's a roadmap to guide you through the process and help you succeed:
๐ ๐ญ. ๐จ๐ป๐ฑ๐ฒ๐ฟ๐๐๐ฎ๐ป๐ฑ ๐๐ต๐ฒ ๐๐ฎ๐๐ถ๐ฐ๐:
Master fundamental concepts like statistics, linear algebra, and probability. These are crucial for tackling both theoretical and practical questions.
๐ป ๐ฎ. ๐ช๐ผ๐ฟ๐ธ ๐ผ๐ป ๐ฅ๐ฒ๐ฎ๐น-๐ช๐ผ๐ฟ๐น๐ฑ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐:
Build a strong portfolio by solving real-world problems. Kaggle competitions, open datasets, and personal projects are great ways to gain hands-on experience.
๐ง ๐ฏ. ๐ฆ๐ต๐ฎ๐ฟ๐ฝ๐ฒ๐ป ๐ฌ๐ผ๐๐ฟ ๐๐ผ๐ฑ๐ถ๐ป๐ด ๐ฆ๐ธ๐ถ๐น๐น๐:
Coding is key in Data Science! Practice on platforms like LeetCode, HackerRank, or Codewars to boost your problem-solving ability and efficiency. Be comfortable with Python, SQL, and essential libraries.
๐ ๐ฐ. ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐๐ฎ๐๐ฎ ๐ช๐ฟ๐ฎ๐ป๐ด๐น๐ถ๐ป๐ด & ๐ฃ๐ฟ๐ฒ๐ฝ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด:
A significant portion of Data Science work revolves around cleaning and preparing data. Make sure you're comfortable with handling missing data, outliers, and feature engineering.
๐ ๐ฑ. ๐ฆ๐๐๐ฑ๐ ๐๐น๐ด๐ผ๐ฟ๐ถ๐๐ต๐บ๐ & ๐ ๐ผ๐ฑ๐ฒ๐น๐:
From decision trees to neural networks, ensure you understand how different models work and when to apply them. Know their strengths, weaknesses, and the mathematical principles behind them.
๐ฌ ๐ฒ. ๐๐บ๐ฝ๐ฟ๐ผ๐๐ฒ ๐๐ผ๐บ๐บ๐๐ป๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐ฆ๐ธ๐ถ๐น๐น๐:
Being able to explain complex concepts in a simple way is essential, especially when communicating with non-technical stakeholders. Practice explaining your findings and solutions clearly.
๐ ๐ณ. ๐ ๐ผ๐ฐ๐ธ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐ & ๐๐ฒ๐ฒ๐ฑ๐ฏ๐ฎ๐ฐ๐ธ:
Practice mock interviews with peers or mentors. Constructive feedback will help you identify areas of improvement and build confidence.
๐ ๐ด. ๐๐ฒ๐ฒ๐ฝ ๐จ๐ฝ ๐ช๐ถ๐๐ต ๐ง๐ฟ๐ฒ๐ป๐ฑ๐:
Data Science is a fast-evolving field! Stay updated on the latest techniques, tools, and industry trends to remain competitive.
๐ ๐ฃ๐ฟ๐ผ ๐ง๐ถ๐ฝ: Be persistent! Rejections are part of the journey, but every experience teaches you something new.
Data Science interviews can be daunting, but with the right approach, you can ace them! If you're feeling overwhelmed, here's a roadmap to guide you through the process and help you succeed:
๐ ๐ญ. ๐จ๐ป๐ฑ๐ฒ๐ฟ๐๐๐ฎ๐ป๐ฑ ๐๐ต๐ฒ ๐๐ฎ๐๐ถ๐ฐ๐:
Master fundamental concepts like statistics, linear algebra, and probability. These are crucial for tackling both theoretical and practical questions.
๐ป ๐ฎ. ๐ช๐ผ๐ฟ๐ธ ๐ผ๐ป ๐ฅ๐ฒ๐ฎ๐น-๐ช๐ผ๐ฟ๐น๐ฑ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐:
Build a strong portfolio by solving real-world problems. Kaggle competitions, open datasets, and personal projects are great ways to gain hands-on experience.
๐ง ๐ฏ. ๐ฆ๐ต๐ฎ๐ฟ๐ฝ๐ฒ๐ป ๐ฌ๐ผ๐๐ฟ ๐๐ผ๐ฑ๐ถ๐ป๐ด ๐ฆ๐ธ๐ถ๐น๐น๐:
Coding is key in Data Science! Practice on platforms like LeetCode, HackerRank, or Codewars to boost your problem-solving ability and efficiency. Be comfortable with Python, SQL, and essential libraries.
๐ ๐ฐ. ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐๐ฎ๐๐ฎ ๐ช๐ฟ๐ฎ๐ป๐ด๐น๐ถ๐ป๐ด & ๐ฃ๐ฟ๐ฒ๐ฝ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด:
A significant portion of Data Science work revolves around cleaning and preparing data. Make sure you're comfortable with handling missing data, outliers, and feature engineering.
๐ ๐ฑ. ๐ฆ๐๐๐ฑ๐ ๐๐น๐ด๐ผ๐ฟ๐ถ๐๐ต๐บ๐ & ๐ ๐ผ๐ฑ๐ฒ๐น๐:
From decision trees to neural networks, ensure you understand how different models work and when to apply them. Know their strengths, weaknesses, and the mathematical principles behind them.
๐ฌ ๐ฒ. ๐๐บ๐ฝ๐ฟ๐ผ๐๐ฒ ๐๐ผ๐บ๐บ๐๐ป๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐ฆ๐ธ๐ถ๐น๐น๐:
Being able to explain complex concepts in a simple way is essential, especially when communicating with non-technical stakeholders. Practice explaining your findings and solutions clearly.
๐ ๐ณ. ๐ ๐ผ๐ฐ๐ธ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐ & ๐๐ฒ๐ฒ๐ฑ๐ฏ๐ฎ๐ฐ๐ธ:
Practice mock interviews with peers or mentors. Constructive feedback will help you identify areas of improvement and build confidence.
๐ ๐ด. ๐๐ฒ๐ฒ๐ฝ ๐จ๐ฝ ๐ช๐ถ๐๐ต ๐ง๐ฟ๐ฒ๐ป๐ฑ๐:
Data Science is a fast-evolving field! Stay updated on the latest techniques, tools, and industry trends to remain competitive.
๐ ๐ฃ๐ฟ๐ผ ๐ง๐ถ๐ฝ: Be persistent! Rejections are part of the journey, but every experience teaches you something new.
Many people still aren't fully utilizing the power of Telegram.
There are numerous channels on Telegram that can help you find the latest job and internship opportunities?
Here are some of my top channel recommendations to help you get started ๐๐
Latest Jobs & Internships: https://t.iss.one/getjobss
Jobs Preparation Resources:
https://t.iss.one/jobinterviewsprep
Web Development Jobs:
https://t.iss.one/webdeveloperjob
Data Science Jobs:
https://t.iss.one/datasciencej
Interview Tips:
https://t.iss.one/Interview_Jobs
Data Analyst Jobs:
https://t.iss.one/jobs_SQL
AI Jobs:
https://t.iss.one/AIjobz
Remote Jobs:
https://t.iss.one/jobs_us_uk
FAANG Jobs:
https://t.iss.one/FAANGJob
Software Developer Jobs: https://t.iss.one/internshiptojobs
If you found this helpful, donโt forget to like, share, and follow for more resources that can boost your career journey!
Let me know if you know any other useful telegram channel
ENJOY LEARNING๐๐
There are numerous channels on Telegram that can help you find the latest job and internship opportunities?
Here are some of my top channel recommendations to help you get started ๐๐
Latest Jobs & Internships: https://t.iss.one/getjobss
Jobs Preparation Resources:
https://t.iss.one/jobinterviewsprep
Web Development Jobs:
https://t.iss.one/webdeveloperjob
Data Science Jobs:
https://t.iss.one/datasciencej
Interview Tips:
https://t.iss.one/Interview_Jobs
Data Analyst Jobs:
https://t.iss.one/jobs_SQL
AI Jobs:
https://t.iss.one/AIjobz
Remote Jobs:
https://t.iss.one/jobs_us_uk
FAANG Jobs:
https://t.iss.one/FAANGJob
Software Developer Jobs: https://t.iss.one/internshiptojobs
If you found this helpful, donโt forget to like, share, and follow for more resources that can boost your career journey!
Let me know if you know any other useful telegram channel
ENJOY LEARNING๐๐
๐1
Forwarded from Artificial Intelligence
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐ช๐ฒ๐ฏ๐๐ถ๐๐ฒ๐ ๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ป ๐ฃ๐๐๐ต๐ผ๐ป ๐ณ๐ฟ๐ผ๐บ ๐ฆ๐ฐ๐ฟ๐ฎ๐๐ฐ๐ต ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ (๐ก๐ผ ๐๐ป๐๐ฒ๐๐๐บ๐ฒ๐ป๐ ๐ก๐ฒ๐ฒ๐ฑ๐ฒ๐ฑ!)๐
If youโre serious about starting your tech journey, Python is one of the best languages to master๐จโ๐ป๐จโ๐
Iโve found 5 hidden gems that offer beginner tutorials, advanced exercises, and even real-world projects โ absolutely FREE๐ฅ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4lOVqmb
Start today, and youโll thank yourself tomorrow.โ ๏ธ
If youโre serious about starting your tech journey, Python is one of the best languages to master๐จโ๐ป๐จโ๐
Iโve found 5 hidden gems that offer beginner tutorials, advanced exercises, and even real-world projects โ absolutely FREE๐ฅ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4lOVqmb
Start today, and youโll thank yourself tomorrow.โ ๏ธ
๐1
Machine learning powers so many things around us โ from recommendation systems to self-driving cars!
But understanding the different types of algorithms can be tricky.
This is a quick and easy guide to the four main categories: Supervised, Unsupervised, Semi-Supervised, and Reinforcement Learning.
๐. ๐๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐
In supervised learning, the model learns from examples that already have the answers (labeled data). The goal is for the model to predict the correct result when given new data.
๐๐จ๐ฆ๐ ๐๐จ๐ฆ๐ฆ๐จ๐ง ๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ Linear Regression โ For predicting continuous values, like house prices.
โก๏ธ Logistic Regression โ For predicting categories, like spam or not spam.
โก๏ธ Decision Trees โ For making decisions in a step-by-step way.
โก๏ธ K-Nearest Neighbors (KNN) โ For finding similar data points.
โก๏ธ Random Forests โ A collection of decision trees for better accuracy.
โก๏ธ Neural Networks โ The foundation of deep learning, mimicking the human brain.
๐. ๐๐ง๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐
With unsupervised learning, the model explores patterns in data that doesnโt have any labels. It finds hidden structures or groupings.
๐๐จ๐ฆ๐ ๐ฉ๐จ๐ฉ๐ฎ๐ฅ๐๐ซ ๐ฎ๐ง๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ K-Means Clustering โ For grouping data into clusters.
โก๏ธ Hierarchical Clustering โ For building a tree of clusters.
โก๏ธ Principal Component Analysis (PCA) โ For reducing data to its most important parts.
โก๏ธ Autoencoders โ For finding simpler representations of data.
๐. ๐๐๐ฆ๐ข-๐๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐
This is a mix of supervised and unsupervised learning. It uses a small amount of labeled data with a large amount of unlabeled data to improve learning.
๐๐จ๐ฆ๐ฆ๐จ๐ง ๐ฌ๐๐ฆ๐ข-๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ Label Propagation โ For spreading labels through connected data points.
โก๏ธ Semi-Supervised SVM โ For combining labeled and unlabeled data.
โก๏ธ Graph-Based Methods โ For using graph structures to improve learning.
๐. ๐๐๐ข๐ง๐๐จ๐ซ๐๐๐ฆ๐๐ง๐ญ ๐๐๐๐ซ๐ง๐ข๐ง๐
In reinforcement learning, the model learns by trial and error. It interacts with its environment, receives feedback (rewards or penalties), and learns how to act to maximize rewards.
๐๐จ๐ฉ๐ฎ๐ฅ๐๐ซ ๐ซ๐๐ข๐ง๐๐จ๐ซ๐๐๐ฆ๐๐ง๐ญ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ Q-Learning โ For learning the best actions over time.
โก๏ธ Deep Q-Networks (DQN) โ Combining Q-learning with deep learning.
โก๏ธ Policy Gradient Methods โ For learning policies directly.
โก๏ธ Proximal Policy Optimization (PPO) โ For stable and effective learning.
ENJOY LEARNING ๐๐
But understanding the different types of algorithms can be tricky.
This is a quick and easy guide to the four main categories: Supervised, Unsupervised, Semi-Supervised, and Reinforcement Learning.
๐. ๐๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐
In supervised learning, the model learns from examples that already have the answers (labeled data). The goal is for the model to predict the correct result when given new data.
๐๐จ๐ฆ๐ ๐๐จ๐ฆ๐ฆ๐จ๐ง ๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ Linear Regression โ For predicting continuous values, like house prices.
โก๏ธ Logistic Regression โ For predicting categories, like spam or not spam.
โก๏ธ Decision Trees โ For making decisions in a step-by-step way.
โก๏ธ K-Nearest Neighbors (KNN) โ For finding similar data points.
โก๏ธ Random Forests โ A collection of decision trees for better accuracy.
โก๏ธ Neural Networks โ The foundation of deep learning, mimicking the human brain.
๐. ๐๐ง๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐
With unsupervised learning, the model explores patterns in data that doesnโt have any labels. It finds hidden structures or groupings.
๐๐จ๐ฆ๐ ๐ฉ๐จ๐ฉ๐ฎ๐ฅ๐๐ซ ๐ฎ๐ง๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ K-Means Clustering โ For grouping data into clusters.
โก๏ธ Hierarchical Clustering โ For building a tree of clusters.
โก๏ธ Principal Component Analysis (PCA) โ For reducing data to its most important parts.
โก๏ธ Autoencoders โ For finding simpler representations of data.
๐. ๐๐๐ฆ๐ข-๐๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐
This is a mix of supervised and unsupervised learning. It uses a small amount of labeled data with a large amount of unlabeled data to improve learning.
๐๐จ๐ฆ๐ฆ๐จ๐ง ๐ฌ๐๐ฆ๐ข-๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ Label Propagation โ For spreading labels through connected data points.
โก๏ธ Semi-Supervised SVM โ For combining labeled and unlabeled data.
โก๏ธ Graph-Based Methods โ For using graph structures to improve learning.
๐. ๐๐๐ข๐ง๐๐จ๐ซ๐๐๐ฆ๐๐ง๐ญ ๐๐๐๐ซ๐ง๐ข๐ง๐
In reinforcement learning, the model learns by trial and error. It interacts with its environment, receives feedback (rewards or penalties), and learns how to act to maximize rewards.
๐๐จ๐ฉ๐ฎ๐ฅ๐๐ซ ๐ซ๐๐ข๐ง๐๐จ๐ซ๐๐๐ฆ๐๐ง๐ญ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ Q-Learning โ For learning the best actions over time.
โก๏ธ Deep Q-Networks (DQN) โ Combining Q-learning with deep learning.
โก๏ธ Policy Gradient Methods โ For learning policies directly.
โก๏ธ Proximal Policy Optimization (PPO) โ For stable and effective learning.
ENJOY LEARNING ๐๐
๐2
Probability for Data Science
โค2๐1
๐๐ผ๐ผ๐ด๐น๐ฒ ๐๐ฅ๐๐ ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
Ever wondered how machines describe images in words?๐ป
Want to get hands-on with cutting-edge AI and computer vision โ for FREE?๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42FaT0Y
๐ฏ Start Learning AI for FREE
Ever wondered how machines describe images in words?๐ป
Want to get hands-on with cutting-edge AI and computer vision โ for FREE?๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42FaT0Y
๐ฏ Start Learning AI for FREE
๐2