Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence
37.8K subscribers
283 photos
76 files
337 links
Free Datasets For Data Science Projects & Portfolio

Buy ads: https://telega.io/c/DataPortfolio

For Promotions/ads: @coderfun @love_data
Download Telegram
Websites to find Free Project Datasets ๐Ÿ‘†
โค4๐Ÿ‘2
๐—ง๐—ผ๐—ฝ ๐Ÿฐ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐—ง๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—ฆ๐—ค๐—Ÿ ๐—™๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐Ÿ˜

These FREE resources are all you need to go from beginner to confident analyst! ๐Ÿ’ป๐Ÿ“Š

โœ… Hands-on projects
โœ… Beginner to advanced lessons
โœ… Resume-worthy skills

๐—Ÿ๐—ถ๐—ป๐—ธ:-๐Ÿ‘‡

https://pdlink.in/4jkQaW1

Learn today, level up tomorrow. Letโ€™s go!โœ…
๐Ÿ‘1
Sharing 20+ Diverse Datasets๐Ÿ“Š for Data Science and Analytics practice!


1. How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview

2. Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand

3. Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction

4. Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data

5. Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction

6. Iris Dataset: https://archive.ics.uci.edu/ml/datasets/iris

7. Titanic Dataset: https://www.kaggle.com/c/titanic

8. Wine Quality Dataset: https://archive.ics.uci.edu/ml/datasets/Wine+Quality

9. Heart Disease Dataset: https://archive.ics.uci.edu/ml/datasets/Heart+Disease

10. Bengaluru House Price Dataset: https://www.kaggle.com/amitabhajoy/bengaluru-house-price-data

11. Breast Cancer Dataset: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

12. Credit Card Fraud Detection: https://www.kaggle.com/mlg-ulb/creditcardfraud

13. Netflix Movies and TV Shows: https://www.kaggle.com/shivamb/netflix-shows

14. Trending YouTube Video Statistics: https://www.kaggle.com/datasnaek/youtube-new

15. Walmart Store Sales Forecasting: https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting

16. FIFA 19 Complete Player Dataset: https://www.kaggle.com/karangadiya/fifa19

17. World Happiness Report: https://www.kaggle.com/unsdsn/world-happiness

18. TMDB 5000 Movie Dataset: https://www.kaggle.com/tmdb/tmdb-movie-metadata

19. Students Performance in Exams: https://www.kaggle.com/spscientist/students-performance-in-exams

20. Twitter Sentiment Analysis Dataset: https://www.kaggle.com/kazanova/sentiment140

21. Digit Recognizer: https://www.kaggle.com/c/digit-recognizer


๐Ÿ’ป๐Ÿ” Don't miss out on these valuable resources for advancing your data science journey!
๐Ÿ‘3
๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ๐—•๐—œ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ ๐—™๐—ฟ๐—ผ๐—บ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜๐Ÿ˜

โœ… Beginner-friendly
โœ… Straight from Microsoft
โœ… And yesโ€ฆ a badge for that resume flex

Perfect for beginners, job seekers, & Working Professionals

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/4iq8QlM

Enroll for FREE & Get Certified ๐ŸŽ“
Preparing for a data science interview can be challenging, but with the right approach, you can increase your chances of success. Here are some tips to help you prepare for your next data science interview:

๐Ÿ‘‰ 1. Review the Fundamentals: Make sure you have a thorough understanding of the fundamentals of statistics, probability, and linear algebra. You should also be familiar with data structures, algorithms, and programming languages like Python, R, and SQL.

๐Ÿ‘‰ 2. Brush up on Machine Learning: Machine learning is a key aspect of data science. Make sure you have a solid understanding of different types of machine learning algorithms like supervised, unsupervised, and reinforcement learning.

๐Ÿ‘‰ 3. Practice Coding: Practice coding questions related to data structures, algorithms, and data science problems. You can use online resources like HackerRank, LeetCode, and Kaggle to practice.

๐Ÿ‘‰ 4. Build a Portfolio: Create a portfolio of projects that demonstrate your data science skills. This can include data cleaning, data wrangling, exploratory data analysis, and machine learning projects.

๐Ÿ‘‰ 5. Practice Communication: Data scientists are expected to effectively communicate complex technical concepts to non-technical stakeholders. Practice explaining your projects and technical concepts in simple terms.

๐Ÿ‘‰ 6. Research the Company: Research the company you are interviewing with and their industry. Understand how they use data and what data science problems they are trying to solve.

By following these tips, you can be well-prepared for your next data science interview. Good luck!
๐Ÿ‘2
๐——๐—ฟ๐—ฒ๐—ฎ๐—บ ๐—๐—ผ๐—ฏ ๐—ฎ๐˜ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ? ๐—ง๐—ต๐—ฒ๐˜€๐—ฒ ๐Ÿฐ ๐—™๐—ฅ๐—˜๐—˜ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐—ช๐—ถ๐—น๐—น ๐—›๐—ฒ๐—น๐—ฝ ๐—ฌ๐—ผ๐˜‚ ๐—š๐—ฒ๐˜ ๐—ง๐—ต๐—ฒ๐—ฟ๐—ฒ๐Ÿ˜

Dreaming of working at Google but not sure where to even begin?๐Ÿ“

Start with these FREE insider resourcesโ€”from building a resume that stands out to mastering the Google interview process. ๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/441GCKF

Because if someone else can do it, so can you. Why not you? Why not now?โœ…๏ธ
๐Ÿ‘4
Mathematics for Machine Learning

๐Ÿ“š Book
๐—ก๐—ผ ๐——๐—ฒ๐—ด๐—ฟ๐—ฒ๐—ฒ? ๐—ก๐—ผ ๐—ฃ๐—ฟ๐—ผ๐—ฏ๐—น๐—ฒ๐—บ. ๐—ง๐—ต๐—ฒ๐˜€๐—ฒ ๐Ÿฐ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—–๐—ฎ๐—ป ๐—Ÿ๐—ฎ๐—ป๐—ฑ ๐—ฌ๐—ผ๐˜‚ ๐—ฎ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐—๐—ผ๐—ฏ๐Ÿ˜

Dreaming of a career in data but donโ€™t have a degree? You donโ€™t need one. What you do need are the right skills๐Ÿ”—

These 4 free/affordable certifications can get you there. ๐Ÿ’ปโœจ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4ioaJ2p

Letโ€™s get you certified and hired!โœ…๏ธ
๐Ÿ‘1
Here are 10 project ideas to work on for Data Analytics

1. Customer Churn Prediction: Predict customer churn for subscription-based services. Skills: EDA, classification models. Tools: Python, Scikit-Learn.
2. Retail Sales Forecasting: Forecast sales using historical data. Skills: Time series analysis. Tools: Python, Statsmodels.
3. Sentiment Analysis: Analyze sentiments in product reviews or tweets. Skills: Text processing, NLP. Tools: Python, NLTK.
4. Loan Approval Prediction: Predict loan approvals based on credit risk. Skills: Classification models. Tools: Python, Scikit-Learn.
5. COVID-19 Data Analysis: Explore and visualize COVID-19 trends. Skills: EDA, visualization. Tools: Python, Tableau.
6. Traffic Accident Analysis: Discover patterns in traffic accidents. Skills: Clustering, heatmaps. Tools: Python, Folium.
7. Movie Recommendation System: Build a recommendation system using user ratings. Skills: Collaborative filtering. Tools: Python, Scikit-Learn.
8. E-commerce Analysis: Analyze top-performing products in e-commerce. Skills: EDA, association rules. Tools: Python, Apriori.
9. Stock Market Analysis: Analyze stock trends using historical data. Skills: Moving averages, sentiment analysis. Tools: Python, Matplotlib.
10. Employee Attrition Analysis: Predict employee turnover. Skills: Classification models, HR analytics. Tools: Python, Scikit-Learn.

And this is how you can work on

Hereโ€™s a compact list of free resources for working on data analytics projects:

1. Datasets
โ€ข Kaggle Datasets: Wide range of datasets and community discussions.
โ€ข UCI Machine Learning Repository: Great for educational datasets.
โ€ข Data.gov: U.S. government datasets (e.g., traffic, COVID-19).
2. Learning Platforms
โ€ข YouTube: Channels like Data School and freeCodeCamp for tutorials.
โ€ข 365DataScience: Data Science & AI Related Courses
3. Tools
โ€ข Google Colab: Free Jupyter Notebooks for Python coding.
โ€ข Tableau Public & Power BI Desktop: Free data visualization tools.
4. Project Resources
โ€ข Kaggle Notebooks & GitHub: Code examples and project walk-throughs.
โ€ข Data Analytics on Medium: Project guides and tutorials.

ENJOY LEARNING โœ…๏ธโœ…๏ธ

#datascienceprojects
๐Ÿ‘2โค1
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐—ง๐—ต๐—ฎ๐˜โ€™๐—น๐—น ๐— ๐—ฎ๐—ธ๐—ฒ ๐—ฆ๐—ค๐—Ÿ ๐—™๐—ถ๐—ป๐—ฎ๐—น๐—น๐˜† ๐—–๐—น๐—ถ๐—ฐ๐—ธ.๐Ÿ˜

SQL seems tough, right? ๐Ÿ˜ฉ

These 5 FREE SQL resources will take you from beginner to advanced without boring theory dumps or confusion.๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3GtntaC

Master it with ease. ๐Ÿ’ก
๐Ÿ‘2
Python Roadmap: ๐Ÿ—บ

๐Ÿ“‚ Basics
โ€ƒโˆŸ๐Ÿ“‚ Data Types & Variables
โ€ƒโˆŸ๐Ÿ“‚ Operators & Expressions
โ€ƒโˆŸ๐Ÿ“‚ Control Flow (if, loops)
โ€ƒโ€ƒโˆŸ๐Ÿ“‚ Functions & Modules
โ€ƒโ€ƒโ€ƒโˆŸ๐Ÿ“‚ File Handling
โ€ƒโ€ƒโ€ƒโ€ƒโˆŸ๐Ÿ“‚ OOP (Classes & Objects)
โ€ƒโ€ƒโ€ƒโ€ƒโ€ƒโˆŸ๐Ÿ“‚ Exception Handling
โ€ƒโ€ƒโ€ƒโ€ƒโ€ƒโ€ƒ
โˆŸ๐Ÿ“‚ Advanced Topics (Decorators, Generators)
โ€ƒโˆŸ๐Ÿ“‚ Libraries (NumPy, Pandas, Matplotlib)
โ€ƒโˆŸ๐Ÿ“‚ Web Scraping / API Integration
โ€ƒโˆŸ๐Ÿ“‚ Frameworks (Flask/Django)
โ€ƒ โˆŸ๐Ÿ“‚ Automation & Scripting
โ€ƒโ€ƒโ€ƒโˆŸ๐Ÿ“‚ Projects
โ€ƒโ€ƒโ€ƒโ€ƒโˆŸ โœ… Apply For Job

Like if you need a detailed explanation step-by-step โค๏ธ
๐Ÿ‘7โค4
๐—ช๐—ฎ๐—ป๐˜ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—œ๐—ป-๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ โ€” ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ โ€” ๐——๐—ถ๐—ฟ๐—ฒ๐—ฐ๐˜๐—น๐˜† ๐—ณ๐—ฟ๐—ผ๐—บ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ?๐Ÿ˜

Whether youโ€™re a student, job seeker, or just hungry to upskill โ€” these 5 beginner-friendly courses are your golden ticket. ๐ŸŽŸ๏ธ

Just career-boosting knowledge and certificates that make your resume pop๐Ÿ“„

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/42vL6br

All The Best ๐ŸŽŠ
10 Python Libraries Every AI Engineer Should Know

1. Hugging Face Transformers
A powerful library for using and fine-tuning pre-trained transformer models for NLP. Learn more:
Hugging Face NLP Course

2. Ollama
A framework for running and managing open-source LLMs locally with ease. Learn video:
Ollama Course

3. OpenAI Python SDK
The official toolkit for integrating OpenAI models into Python applications. Learn more:
The official developer quickstart guide

4. Anthropic SDK
A client library for seamless interaction with Claude and other Anthropic models. Learn more:
Anthropic Python SDK

5. LangChain
A framework for building LLM applications with modular and extensible components. Learn more:
DeepLearning.AI

6. LlamaIndex
A toolkit for integrating custom data sources with LLMs for better retrieval. Learn more:
Building Agentic RAG with LlamaIndex

7. SQLAlchemy
A Python SQL toolkit and ORM for efficient and maintainable database interactions. Learn more:
SQLAlchemy Unified Tutorial

8. ChromaDB
An open-source vector database optimized for AI-powered search and retrieval. Learn more:
Getting Started - Chroma Docs

9. Weaviate
A cloud-native vector search engine for efficient semantic search at scale. Learn more:
101T Work with: Text data

10. Weights & Biases

A platform for tracking, visualizing, and optimizing ML experiments.
Learn more: Effective MLOps: Model Development

#artificialintelligence
๐Ÿ‘4โค1
Forwarded from Artificial Intelligence
๐—ง๐—–๐—ฆ ๐—™๐—ฅ๐—˜๐—˜ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

Want to kickstart your career in Data Analytics but donโ€™t know where to begin?๐Ÿ‘จโ€๐Ÿ’ป

TCS has your back with a completely FREE course designed just for beginnersโœ…

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4jNMoEg

Just pure, job-ready learning๐Ÿ“
Important Pandas & Spark Commands for Data Science
๐Ÿ”ฅ2
Flow chart of commonly used statistical tests
๐Ÿ”ฅ3
๐Ÿฒ ๐—•๐—ฒ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ง๐˜‚๐—ฏ๐—ฒ ๐—–๐—ต๐—ฎ๐—ป๐—ป๐—ฒ๐—น๐˜€ ๐˜๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—•๐—œ๐Ÿ˜

Power BI Isnโ€™t Just a Toolโ€”Itโ€™s a Career Game-Changer๐Ÿš€

Whether youโ€™re a student, a working professional, or switching careers, learning Power BI can set you apart in the competitive world of data analytics๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3ELirpu

Your Analytics Journey Starts Nowโœ…๏ธ
๐Ÿ‘1
Exploratory Data Analysis ( EDA)
๐Ÿ”ฅ3
Forwarded from Artificial Intelligence
๐Ÿฑ ๐—™๐—ฅ๐—˜๐—˜ ๐—œ๐—•๐—  ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ฆ๐—ธ๐˜†๐—ฟ๐—ผ๐—ฐ๐—ธ๐—ฒ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ๐Ÿ˜

From mastering Cloud Computing to diving into Deep Learning, Docker, Big Data, and IoT Blockchain

IBM, one of the biggest tech companies, is offering 5 FREE courses that can seriously upgrade your resume and skills โ€” without costing you anything.

๐—Ÿ๐—ถ๐—ป๐—ธ:-๐Ÿ‘‡

https://pdlink.in/44GsWoC

Enroll For FREE & Get Certified โœ…
๐Ÿ‘2
5 frequently Asked SQL Interview Questions with Answers in Data Engineering interviews:
๐ƒ๐ข๐Ÿ๐Ÿ๐ข๐œ๐ฎ๐ฅ๐ญ๐ฒ - ๐Œ๐ž๐๐ข๐ฎ๐ฆ

โšซ๏ธDetermine the Top 5 Products with the Highest Revenue in Each Category.
Schema: Products (ProductID, Name, CategoryID), Sales (SaleID, ProductID, Amount)

WITH ProductRevenue AS (
SELECT p.ProductID,
p.Name,
p.CategoryID,
SUM(s.Amount) AS TotalRevenue,
RANK() OVER (PARTITION BY p.CategoryID ORDER BY SUM(s.Amount) DESC) AS RevenueRank
FROM Products p
JOIN Sales s ON p.ProductID = s.ProductID
GROUP BY p.ProductID, p.Name, p.CategoryID
)
SELECT ProductID, Name, CategoryID, TotalRevenue
FROM ProductRevenue
WHERE RevenueRank <= 5;

โšซ๏ธ Identify Employees with Increasing Sales for Four Consecutive Quarters.
Schema: Sales (EmployeeID, SaleDate, Amount)

WITH QuarterlySales AS (
SELECT EmployeeID,
DATE_TRUNC('quarter', SaleDate) AS Quarter,
SUM(Amount) AS QuarterlyAmount
FROM Sales
GROUP BY EmployeeID, DATE_TRUNC('quarter', SaleDate)
),
SalesTrend AS (
SELECT EmployeeID,
Quarter,
QuarterlyAmount,
LAG(QuarterlyAmount, 1) OVER (PARTITION BY EmployeeID ORDER BY Quarter) AS PrevQuarter1,
LAG(QuarterlyAmount, 2) OVER (PARTITION BY EmployeeID ORDER BY Quarter) AS PrevQuarter2,
LAG(QuarterlyAmount, 3) OVER (PARTITION BY EmployeeID ORDER BY Quarter) AS PrevQuarter3
FROM QuarterlySales
)
SELECT EmployeeID, Quarter, QuarterlyAmount
FROM SalesTrend
WHERE QuarterlyAmount > PrevQuarter1 AND PrevQuarter1 > PrevQuarter2 AND PrevQuarter2 > PrevQuarter3;

โšซ๏ธ List Customers Who Made Purchases in Each of the Last Three Years.
Schema: Orders (OrderID, CustomerID, OrderDate)

WITH YearlyOrders AS (
SELECT CustomerID,
EXTRACT(YEAR FROM OrderDate) AS OrderYear
FROM Orders
GROUP BY CustomerID, EXTRACT(YEAR FROM OrderDate)
),
RecentYears AS (
SELECT DISTINCT OrderYear
FROM Orders
WHERE OrderDate >= CURRENT_DATE - INTERVAL '3 years'
),
CustomerYearlyOrders AS (
SELECT CustomerID,
COUNT(DISTINCT OrderYear) AS YearCount
FROM YearlyOrders
WHERE OrderYear IN (SELECT OrderYear FROM RecentYears)
GROUP BY CustomerID
)
SELECT CustomerID
FROM CustomerYearlyOrders
WHERE YearCount = 3;


โšซ๏ธ Find the Third Lowest Price for Each Product Category.
Schema: Products (ProductID, Name, CategoryID, Price)

WITH RankedPrices AS (
SELECT CategoryID,
Price,
DENSE_RANK() OVER (PARTITION BY CategoryID ORDER BY Price ASC) AS PriceRank
FROM Products
)
SELECT CategoryID, Price
FROM RankedPrices
WHERE PriceRank = 3;

โšซ๏ธ Identify Products with Total Sales Exceeding a Specified Threshold Over the Last 30 Days.
Schema: Sales (SaleID, ProductID, SaleDate, Amount)

WITH RecentSales AS (
SELECT ProductID,
SUM(Amount) AS TotalSales
FROM Sales
WHERE SaleDate >= CURRENT_DATE - INTERVAL '30 days'
GROUP BY ProductID
)
SELECT ProductID, TotalSales
FROM RecentSales
WHERE TotalSales > 200;

Here you can find essential Interview Resources๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post if you need more ๐Ÿ‘โค๏ธ

Hope it helps :)
๐Ÿ‘1
๐Ÿฐ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ฏ๐˜† ๐—›๐—ฎ๐—ฟ๐˜ƒ๐—ฎ๐—ฟ๐—ฑ ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐˜๐—ฎ๐—ป๐—ณ๐—ผ๐—ฟ๐—ฑ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—”๐—œ๐Ÿ˜

Dreaming of Mastering AI? ๐ŸŽฏ

Harvard and Stanfordโ€”two of the most prestigious universities in the worldโ€”are offering FREE AI courses๐Ÿ‘จโ€๐Ÿ’ป

No hidden fees, no long applicationsโ€”just pure, world-class education, accessible to everyone๐Ÿ”ฅ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3GqHkau

Hereโ€™s your golden ticket to the future!โœ…
๐Ÿ‘1