Forwarded from SQL Programming Resources
๐ง๐ผ๐ฝ ๐ฐ ๐๐ผ๐ฟ ๐๐ฅ๐๐ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ ๐ง๐ผ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐ฆ๐ค๐ ๐๐ผ๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐
These FREE resources are all you need to go from beginner to confident analyst! ๐ป๐
โ Hands-on projects
โ Beginner to advanced lessons
โ Resume-worthy skills
๐๐ถ๐ป๐ธ:-๐
https://pdlink.in/4jkQaW1
Learn today, level up tomorrow. Letโs go!โ
These FREE resources are all you need to go from beginner to confident analyst! ๐ป๐
โ Hands-on projects
โ Beginner to advanced lessons
โ Resume-worthy skills
๐๐ถ๐ป๐ธ:-๐
https://pdlink.in/4jkQaW1
Learn today, level up tomorrow. Letโs go!โ
๐1
Sharing 20+ Diverse Datasets๐ for Data Science and Analytics practice!
1. How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
2. Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
3. Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
4. Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
5. Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
6. Iris Dataset: https://archive.ics.uci.edu/ml/datasets/iris
7. Titanic Dataset: https://www.kaggle.com/c/titanic
8. Wine Quality Dataset: https://archive.ics.uci.edu/ml/datasets/Wine+Quality
9. Heart Disease Dataset: https://archive.ics.uci.edu/ml/datasets/Heart+Disease
10. Bengaluru House Price Dataset: https://www.kaggle.com/amitabhajoy/bengaluru-house-price-data
11. Breast Cancer Dataset: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
12. Credit Card Fraud Detection: https://www.kaggle.com/mlg-ulb/creditcardfraud
13. Netflix Movies and TV Shows: https://www.kaggle.com/shivamb/netflix-shows
14. Trending YouTube Video Statistics: https://www.kaggle.com/datasnaek/youtube-new
15. Walmart Store Sales Forecasting: https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting
16. FIFA 19 Complete Player Dataset: https://www.kaggle.com/karangadiya/fifa19
17. World Happiness Report: https://www.kaggle.com/unsdsn/world-happiness
18. TMDB 5000 Movie Dataset: https://www.kaggle.com/tmdb/tmdb-movie-metadata
19. Students Performance in Exams: https://www.kaggle.com/spscientist/students-performance-in-exams
20. Twitter Sentiment Analysis Dataset: https://www.kaggle.com/kazanova/sentiment140
21. Digit Recognizer: https://www.kaggle.com/c/digit-recognizer
๐ป๐ Don't miss out on these valuable resources for advancing your data science journey!
1. How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
2. Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
3. Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
4. Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
5. Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
6. Iris Dataset: https://archive.ics.uci.edu/ml/datasets/iris
7. Titanic Dataset: https://www.kaggle.com/c/titanic
8. Wine Quality Dataset: https://archive.ics.uci.edu/ml/datasets/Wine+Quality
9. Heart Disease Dataset: https://archive.ics.uci.edu/ml/datasets/Heart+Disease
10. Bengaluru House Price Dataset: https://www.kaggle.com/amitabhajoy/bengaluru-house-price-data
11. Breast Cancer Dataset: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
12. Credit Card Fraud Detection: https://www.kaggle.com/mlg-ulb/creditcardfraud
13. Netflix Movies and TV Shows: https://www.kaggle.com/shivamb/netflix-shows
14. Trending YouTube Video Statistics: https://www.kaggle.com/datasnaek/youtube-new
15. Walmart Store Sales Forecasting: https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting
16. FIFA 19 Complete Player Dataset: https://www.kaggle.com/karangadiya/fifa19
17. World Happiness Report: https://www.kaggle.com/unsdsn/world-happiness
18. TMDB 5000 Movie Dataset: https://www.kaggle.com/tmdb/tmdb-movie-metadata
19. Students Performance in Exams: https://www.kaggle.com/spscientist/students-performance-in-exams
20. Twitter Sentiment Analysis Dataset: https://www.kaggle.com/kazanova/sentiment140
21. Digit Recognizer: https://www.kaggle.com/c/digit-recognizer
๐ป๐ Don't miss out on these valuable resources for advancing your data science journey!
๐3
Forwarded from Python Projects & Resources
๐ฃ๐ผ๐๐ฒ๐ฟ๐๐ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ ๐๐ฟ๐ผ๐บ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐๐
โ Beginner-friendly
โ Straight from Microsoft
โ And yesโฆ a badge for that resume flex
Perfect for beginners, job seekers, & Working Professionals
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4iq8QlM
Enroll for FREE & Get Certified ๐
โ Beginner-friendly
โ Straight from Microsoft
โ And yesโฆ a badge for that resume flex
Perfect for beginners, job seekers, & Working Professionals
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4iq8QlM
Enroll for FREE & Get Certified ๐
Preparing for a data science interview can be challenging, but with the right approach, you can increase your chances of success. Here are some tips to help you prepare for your next data science interview:
๐ 1. Review the Fundamentals: Make sure you have a thorough understanding of the fundamentals of statistics, probability, and linear algebra. You should also be familiar with data structures, algorithms, and programming languages like Python, R, and SQL.
๐ 2. Brush up on Machine Learning: Machine learning is a key aspect of data science. Make sure you have a solid understanding of different types of machine learning algorithms like supervised, unsupervised, and reinforcement learning.
๐ 3. Practice Coding: Practice coding questions related to data structures, algorithms, and data science problems. You can use online resources like HackerRank, LeetCode, and Kaggle to practice.
๐ 4. Build a Portfolio: Create a portfolio of projects that demonstrate your data science skills. This can include data cleaning, data wrangling, exploratory data analysis, and machine learning projects.
๐ 5. Practice Communication: Data scientists are expected to effectively communicate complex technical concepts to non-technical stakeholders. Practice explaining your projects and technical concepts in simple terms.
๐ 6. Research the Company: Research the company you are interviewing with and their industry. Understand how they use data and what data science problems they are trying to solve.
By following these tips, you can be well-prepared for your next data science interview. Good luck!
๐ 1. Review the Fundamentals: Make sure you have a thorough understanding of the fundamentals of statistics, probability, and linear algebra. You should also be familiar with data structures, algorithms, and programming languages like Python, R, and SQL.
๐ 2. Brush up on Machine Learning: Machine learning is a key aspect of data science. Make sure you have a solid understanding of different types of machine learning algorithms like supervised, unsupervised, and reinforcement learning.
๐ 3. Practice Coding: Practice coding questions related to data structures, algorithms, and data science problems. You can use online resources like HackerRank, LeetCode, and Kaggle to practice.
๐ 4. Build a Portfolio: Create a portfolio of projects that demonstrate your data science skills. This can include data cleaning, data wrangling, exploratory data analysis, and machine learning projects.
๐ 5. Practice Communication: Data scientists are expected to effectively communicate complex technical concepts to non-technical stakeholders. Practice explaining your projects and technical concepts in simple terms.
๐ 6. Research the Company: Research the company you are interviewing with and their industry. Understand how they use data and what data science problems they are trying to solve.
By following these tips, you can be well-prepared for your next data science interview. Good luck!
๐2
๐๐ฟ๐ฒ๐ฎ๐บ ๐๐ผ๐ฏ ๐ฎ๐ ๐๐ผ๐ผ๐ด๐น๐ฒ? ๐ง๐ต๐ฒ๐๐ฒ ๐ฐ ๐๐ฅ๐๐ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ ๐ช๐ถ๐น๐น ๐๐ฒ๐น๐ฝ ๐ฌ๐ผ๐ ๐๐ฒ๐ ๐ง๐ต๐ฒ๐ฟ๐ฒ๐
Dreaming of working at Google but not sure where to even begin?๐
Start with these FREE insider resourcesโfrom building a resume that stands out to mastering the Google interview process. ๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/441GCKF
Because if someone else can do it, so can you. Why not you? Why not now?โ ๏ธ
Dreaming of working at Google but not sure where to even begin?๐
Start with these FREE insider resourcesโfrom building a resume that stands out to mastering the Google interview process. ๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/441GCKF
Because if someone else can do it, so can you. Why not you? Why not now?โ ๏ธ
๐4
๐ก๐ผ ๐๐ฒ๐ด๐ฟ๐ฒ๐ฒ? ๐ก๐ผ ๐ฃ๐ฟ๐ผ๐ฏ๐น๐ฒ๐บ. ๐ง๐ต๐ฒ๐๐ฒ ๐ฐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐๐ฎ๐ป ๐๐ฎ๐ป๐ฑ ๐ฌ๐ผ๐ ๐ฎ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐๐ผ๐ฏ๐
Dreaming of a career in data but donโt have a degree? You donโt need one. What you do need are the right skills๐
These 4 free/affordable certifications can get you there. ๐ปโจ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ioaJ2p
Letโs get you certified and hired!โ ๏ธ
Dreaming of a career in data but donโt have a degree? You donโt need one. What you do need are the right skills๐
These 4 free/affordable certifications can get you there. ๐ปโจ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ioaJ2p
Letโs get you certified and hired!โ ๏ธ
๐1
Here are 10 project ideas to work on for Data Analytics
1. Customer Churn Prediction: Predict customer churn for subscription-based services. Skills: EDA, classification models. Tools: Python, Scikit-Learn.
2. Retail Sales Forecasting: Forecast sales using historical data. Skills: Time series analysis. Tools: Python, Statsmodels.
3. Sentiment Analysis: Analyze sentiments in product reviews or tweets. Skills: Text processing, NLP. Tools: Python, NLTK.
4. Loan Approval Prediction: Predict loan approvals based on credit risk. Skills: Classification models. Tools: Python, Scikit-Learn.
5. COVID-19 Data Analysis: Explore and visualize COVID-19 trends. Skills: EDA, visualization. Tools: Python, Tableau.
6. Traffic Accident Analysis: Discover patterns in traffic accidents. Skills: Clustering, heatmaps. Tools: Python, Folium.
7. Movie Recommendation System: Build a recommendation system using user ratings. Skills: Collaborative filtering. Tools: Python, Scikit-Learn.
8. E-commerce Analysis: Analyze top-performing products in e-commerce. Skills: EDA, association rules. Tools: Python, Apriori.
9. Stock Market Analysis: Analyze stock trends using historical data. Skills: Moving averages, sentiment analysis. Tools: Python, Matplotlib.
10. Employee Attrition Analysis: Predict employee turnover. Skills: Classification models, HR analytics. Tools: Python, Scikit-Learn.
And this is how you can work on
Hereโs a compact list of free resources for working on data analytics projects:
1. Datasets
โข Kaggle Datasets: Wide range of datasets and community discussions.
โข UCI Machine Learning Repository: Great for educational datasets.
โข Data.gov: U.S. government datasets (e.g., traffic, COVID-19).
2. Learning Platforms
โข YouTube: Channels like Data School and freeCodeCamp for tutorials.
โข 365DataScience: Data Science & AI Related Courses
3. Tools
โข Google Colab: Free Jupyter Notebooks for Python coding.
โข Tableau Public & Power BI Desktop: Free data visualization tools.
4. Project Resources
โข Kaggle Notebooks & GitHub: Code examples and project walk-throughs.
โข Data Analytics on Medium: Project guides and tutorials.
ENJOY LEARNING โ ๏ธโ ๏ธ
#datascienceprojects
1. Customer Churn Prediction: Predict customer churn for subscription-based services. Skills: EDA, classification models. Tools: Python, Scikit-Learn.
2. Retail Sales Forecasting: Forecast sales using historical data. Skills: Time series analysis. Tools: Python, Statsmodels.
3. Sentiment Analysis: Analyze sentiments in product reviews or tweets. Skills: Text processing, NLP. Tools: Python, NLTK.
4. Loan Approval Prediction: Predict loan approvals based on credit risk. Skills: Classification models. Tools: Python, Scikit-Learn.
5. COVID-19 Data Analysis: Explore and visualize COVID-19 trends. Skills: EDA, visualization. Tools: Python, Tableau.
6. Traffic Accident Analysis: Discover patterns in traffic accidents. Skills: Clustering, heatmaps. Tools: Python, Folium.
7. Movie Recommendation System: Build a recommendation system using user ratings. Skills: Collaborative filtering. Tools: Python, Scikit-Learn.
8. E-commerce Analysis: Analyze top-performing products in e-commerce. Skills: EDA, association rules. Tools: Python, Apriori.
9. Stock Market Analysis: Analyze stock trends using historical data. Skills: Moving averages, sentiment analysis. Tools: Python, Matplotlib.
10. Employee Attrition Analysis: Predict employee turnover. Skills: Classification models, HR analytics. Tools: Python, Scikit-Learn.
And this is how you can work on
Hereโs a compact list of free resources for working on data analytics projects:
1. Datasets
โข Kaggle Datasets: Wide range of datasets and community discussions.
โข UCI Machine Learning Repository: Great for educational datasets.
โข Data.gov: U.S. government datasets (e.g., traffic, COVID-19).
2. Learning Platforms
โข YouTube: Channels like Data School and freeCodeCamp for tutorials.
โข 365DataScience: Data Science & AI Related Courses
3. Tools
โข Google Colab: Free Jupyter Notebooks for Python coding.
โข Tableau Public & Power BI Desktop: Free data visualization tools.
4. Project Resources
โข Kaggle Notebooks & GitHub: Code examples and project walk-throughs.
โข Data Analytics on Medium: Project guides and tutorials.
ENJOY LEARNING โ ๏ธโ ๏ธ
#datascienceprojects
๐2โค1
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ ๐ง๐ต๐ฎ๐โ๐น๐น ๐ ๐ฎ๐ธ๐ฒ ๐ฆ๐ค๐ ๐๐ถ๐ป๐ฎ๐น๐น๐ ๐๐น๐ถ๐ฐ๐ธ.๐
SQL seems tough, right? ๐ฉ
These 5 FREE SQL resources will take you from beginner to advanced without boring theory dumps or confusion.๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3GtntaC
Master it with ease. ๐ก
SQL seems tough, right? ๐ฉ
These 5 FREE SQL resources will take you from beginner to advanced without boring theory dumps or confusion.๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3GtntaC
Master it with ease. ๐ก
๐2
Python Roadmap: ๐บ
๐ Basics
โโ๐ Data Types & Variables
โโ๐ Operators & Expressions
โโ๐ Control Flow (if, loops)
โโโ๐ Functions & Modules
โโโโ๐ File Handling
โโโโโ๐ OOP (Classes & Objects)
โโโโโโ๐ Exception Handling
โโโโโโ
โ๐ Advanced Topics (Decorators, Generators)
โโ๐ Libraries (NumPy, Pandas, Matplotlib)
โโ๐ Web Scraping / API Integration
โโ๐ Frameworks (Flask/Django)
โ โ๐ Automation & Scripting
โโโโ๐ Projects
โโโโโ โ Apply For Job
Like if you need a detailed explanation step-by-step โค๏ธ
๐ Basics
โโ๐ Data Types & Variables
โโ๐ Operators & Expressions
โโ๐ Control Flow (if, loops)
โโโ๐ Functions & Modules
โโโโ๐ File Handling
โโโโโ๐ OOP (Classes & Objects)
โโโโโโ๐ Exception Handling
โโโโโโ
โ๐ Advanced Topics (Decorators, Generators)
โโ๐ Libraries (NumPy, Pandas, Matplotlib)
โโ๐ Web Scraping / API Integration
โโ๐ Frameworks (Flask/Django)
โ โ๐ Automation & Scripting
โโโโ๐ Projects
โโโโโ โ Apply For Job
Like if you need a detailed explanation step-by-step โค๏ธ
๐7โค4
๐ช๐ฎ๐ป๐ ๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ป-๐๐ฒ๐บ๐ฎ๐ป๐ฑ ๐ง๐ฒ๐ฐ๐ต ๐ฆ๐ธ๐ถ๐น๐น๐ โ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ โ ๐๐ถ๐ฟ๐ฒ๐ฐ๐๐น๐ ๐ณ๐ฟ๐ผ๐บ ๐๐ผ๐ผ๐ด๐น๐ฒ?๐
Whether youโre a student, job seeker, or just hungry to upskill โ these 5 beginner-friendly courses are your golden ticket. ๐๏ธ
Just career-boosting knowledge and certificates that make your resume pop๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42vL6br
All The Best ๐
Whether youโre a student, job seeker, or just hungry to upskill โ these 5 beginner-friendly courses are your golden ticket. ๐๏ธ
Just career-boosting knowledge and certificates that make your resume pop๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42vL6br
All The Best ๐
10 Python Libraries Every AI Engineer Should Know
1. Hugging Face Transformers
A powerful library for using and fine-tuning pre-trained transformer models for NLP. Learn more: Hugging Face NLP Course
2. Ollama
A framework for running and managing open-source LLMs locally with ease. Learn video: Ollama Course
3. OpenAI Python SDK
The official toolkit for integrating OpenAI models into Python applications. Learn more: The official developer quickstart guide
4. Anthropic SDK
A client library for seamless interaction with Claude and other Anthropic models. Learn more: Anthropic Python SDK
5. LangChain
A framework for building LLM applications with modular and extensible components. Learn more: DeepLearning.AI
6. LlamaIndex
A toolkit for integrating custom data sources with LLMs for better retrieval. Learn more: Building Agentic RAG with LlamaIndex
7. SQLAlchemy
A Python SQL toolkit and ORM for efficient and maintainable database interactions. Learn more: SQLAlchemy Unified Tutorial
8. ChromaDB
An open-source vector database optimized for AI-powered search and retrieval. Learn more: Getting Started - Chroma Docs
9. Weaviate
A cloud-native vector search engine for efficient semantic search at scale. Learn more: 101T Work with: Text data
10. Weights & Biases
A platform for tracking, visualizing, and optimizing ML experiments.
Learn more: Effective MLOps: Model Development
#artificialintelligence
1. Hugging Face Transformers
A powerful library for using and fine-tuning pre-trained transformer models for NLP. Learn more: Hugging Face NLP Course
2. Ollama
A framework for running and managing open-source LLMs locally with ease. Learn video: Ollama Course
3. OpenAI Python SDK
The official toolkit for integrating OpenAI models into Python applications. Learn more: The official developer quickstart guide
4. Anthropic SDK
A client library for seamless interaction with Claude and other Anthropic models. Learn more: Anthropic Python SDK
5. LangChain
A framework for building LLM applications with modular and extensible components. Learn more: DeepLearning.AI
6. LlamaIndex
A toolkit for integrating custom data sources with LLMs for better retrieval. Learn more: Building Agentic RAG with LlamaIndex
7. SQLAlchemy
A Python SQL toolkit and ORM for efficient and maintainable database interactions. Learn more: SQLAlchemy Unified Tutorial
8. ChromaDB
An open-source vector database optimized for AI-powered search and retrieval. Learn more: Getting Started - Chroma Docs
9. Weaviate
A cloud-native vector search engine for efficient semantic search at scale. Learn more: 101T Work with: Text data
10. Weights & Biases
A platform for tracking, visualizing, and optimizing ML experiments.
Learn more: Effective MLOps: Model Development
#artificialintelligence
๐4โค1
Forwarded from Artificial Intelligence
๐ง๐๐ฆ ๐๐ฅ๐๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
Want to kickstart your career in Data Analytics but donโt know where to begin?๐จโ๐ป
TCS has your back with a completely FREE course designed just for beginnersโ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jNMoEg
Just pure, job-ready learning๐
Want to kickstart your career in Data Analytics but donโt know where to begin?๐จโ๐ป
TCS has your back with a completely FREE course designed just for beginnersโ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jNMoEg
Just pure, job-ready learning๐
๐ฒ ๐๐ฒ๐๐ ๐ฌ๐ผ๐๐ง๐๐ฏ๐ฒ ๐๐ต๐ฎ๐ป๐ป๐ฒ๐น๐ ๐๐ผ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐ฃ๐ผ๐๐ฒ๐ฟ ๐๐๐
Power BI Isnโt Just a ToolโItโs a Career Game-Changer๐
Whether youโre a student, a working professional, or switching careers, learning Power BI can set you apart in the competitive world of data analytics๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3ELirpu
Your Analytics Journey Starts Nowโ ๏ธ
Power BI Isnโt Just a ToolโItโs a Career Game-Changer๐
Whether youโre a student, a working professional, or switching careers, learning Power BI can set you apart in the competitive world of data analytics๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3ELirpu
Your Analytics Journey Starts Nowโ ๏ธ
๐1
Forwarded from Artificial Intelligence
๐ฑ ๐๐ฅ๐๐ ๐๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ฆ๐ธ๐๐ฟ๐ผ๐ฐ๐ธ๐ฒ๐ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ๐
From mastering Cloud Computing to diving into Deep Learning, Docker, Big Data, and IoT Blockchain
IBM, one of the biggest tech companies, is offering 5 FREE courses that can seriously upgrade your resume and skills โ without costing you anything.
๐๐ถ๐ป๐ธ:-๐
https://pdlink.in/44GsWoC
Enroll For FREE & Get Certified โ
From mastering Cloud Computing to diving into Deep Learning, Docker, Big Data, and IoT Blockchain
IBM, one of the biggest tech companies, is offering 5 FREE courses that can seriously upgrade your resume and skills โ without costing you anything.
๐๐ถ๐ป๐ธ:-๐
https://pdlink.in/44GsWoC
Enroll For FREE & Get Certified โ
๐2
5 frequently Asked SQL Interview Questions with Answers in Data Engineering interviews:
๐๐ข๐๐๐ข๐๐ฎ๐ฅ๐ญ๐ฒ - ๐๐๐๐ข๐ฎ๐ฆ
โซ๏ธDetermine the Top 5 Products with the Highest Revenue in Each Category.
Schema: Products (ProductID, Name, CategoryID), Sales (SaleID, ProductID, Amount)
WITH ProductRevenue AS (
SELECT p.ProductID,
p.Name,
p.CategoryID,
SUM(s.Amount) AS TotalRevenue,
RANK() OVER (PARTITION BY p.CategoryID ORDER BY SUM(s.Amount) DESC) AS RevenueRank
FROM Products p
JOIN Sales s ON p.ProductID = s.ProductID
GROUP BY p.ProductID, p.Name, p.CategoryID
)
SELECT ProductID, Name, CategoryID, TotalRevenue
FROM ProductRevenue
WHERE RevenueRank <= 5;
โซ๏ธ Identify Employees with Increasing Sales for Four Consecutive Quarters.
Schema: Sales (EmployeeID, SaleDate, Amount)
WITH QuarterlySales AS (
SELECT EmployeeID,
DATE_TRUNC('quarter', SaleDate) AS Quarter,
SUM(Amount) AS QuarterlyAmount
FROM Sales
GROUP BY EmployeeID, DATE_TRUNC('quarter', SaleDate)
),
SalesTrend AS (
SELECT EmployeeID,
Quarter,
QuarterlyAmount,
LAG(QuarterlyAmount, 1) OVER (PARTITION BY EmployeeID ORDER BY Quarter) AS PrevQuarter1,
LAG(QuarterlyAmount, 2) OVER (PARTITION BY EmployeeID ORDER BY Quarter) AS PrevQuarter2,
LAG(QuarterlyAmount, 3) OVER (PARTITION BY EmployeeID ORDER BY Quarter) AS PrevQuarter3
FROM QuarterlySales
)
SELECT EmployeeID, Quarter, QuarterlyAmount
FROM SalesTrend
WHERE QuarterlyAmount > PrevQuarter1 AND PrevQuarter1 > PrevQuarter2 AND PrevQuarter2 > PrevQuarter3;
โซ๏ธ List Customers Who Made Purchases in Each of the Last Three Years.
Schema: Orders (OrderID, CustomerID, OrderDate)
WITH YearlyOrders AS (
SELECT CustomerID,
EXTRACT(YEAR FROM OrderDate) AS OrderYear
FROM Orders
GROUP BY CustomerID, EXTRACT(YEAR FROM OrderDate)
),
RecentYears AS (
SELECT DISTINCT OrderYear
FROM Orders
WHERE OrderDate >= CURRENT_DATE - INTERVAL '3 years'
),
CustomerYearlyOrders AS (
SELECT CustomerID,
COUNT(DISTINCT OrderYear) AS YearCount
FROM YearlyOrders
WHERE OrderYear IN (SELECT OrderYear FROM RecentYears)
GROUP BY CustomerID
)
SELECT CustomerID
FROM CustomerYearlyOrders
WHERE YearCount = 3;
โซ๏ธ Find the Third Lowest Price for Each Product Category.
Schema: Products (ProductID, Name, CategoryID, Price)
WITH RankedPrices AS (
SELECT CategoryID,
Price,
DENSE_RANK() OVER (PARTITION BY CategoryID ORDER BY Price ASC) AS PriceRank
FROM Products
)
SELECT CategoryID, Price
FROM RankedPrices
WHERE PriceRank = 3;
โซ๏ธ Identify Products with Total Sales Exceeding a Specified Threshold Over the Last 30 Days.
Schema: Sales (SaleID, ProductID, SaleDate, Amount)
WITH RecentSales AS (
SELECT ProductID,
SUM(Amount) AS TotalSales
FROM Sales
WHERE SaleDate >= CURRENT_DATE - INTERVAL '30 days'
GROUP BY ProductID
)
SELECT ProductID, TotalSales
FROM RecentSales
WHERE TotalSales > 200;
Here you can find essential Interview Resources๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like this post if you need more ๐โค๏ธ
Hope it helps :)
๐๐ข๐๐๐ข๐๐ฎ๐ฅ๐ญ๐ฒ - ๐๐๐๐ข๐ฎ๐ฆ
โซ๏ธDetermine the Top 5 Products with the Highest Revenue in Each Category.
Schema: Products (ProductID, Name, CategoryID), Sales (SaleID, ProductID, Amount)
WITH ProductRevenue AS (
SELECT p.ProductID,
p.Name,
p.CategoryID,
SUM(s.Amount) AS TotalRevenue,
RANK() OVER (PARTITION BY p.CategoryID ORDER BY SUM(s.Amount) DESC) AS RevenueRank
FROM Products p
JOIN Sales s ON p.ProductID = s.ProductID
GROUP BY p.ProductID, p.Name, p.CategoryID
)
SELECT ProductID, Name, CategoryID, TotalRevenue
FROM ProductRevenue
WHERE RevenueRank <= 5;
โซ๏ธ Identify Employees with Increasing Sales for Four Consecutive Quarters.
Schema: Sales (EmployeeID, SaleDate, Amount)
WITH QuarterlySales AS (
SELECT EmployeeID,
DATE_TRUNC('quarter', SaleDate) AS Quarter,
SUM(Amount) AS QuarterlyAmount
FROM Sales
GROUP BY EmployeeID, DATE_TRUNC('quarter', SaleDate)
),
SalesTrend AS (
SELECT EmployeeID,
Quarter,
QuarterlyAmount,
LAG(QuarterlyAmount, 1) OVER (PARTITION BY EmployeeID ORDER BY Quarter) AS PrevQuarter1,
LAG(QuarterlyAmount, 2) OVER (PARTITION BY EmployeeID ORDER BY Quarter) AS PrevQuarter2,
LAG(QuarterlyAmount, 3) OVER (PARTITION BY EmployeeID ORDER BY Quarter) AS PrevQuarter3
FROM QuarterlySales
)
SELECT EmployeeID, Quarter, QuarterlyAmount
FROM SalesTrend
WHERE QuarterlyAmount > PrevQuarter1 AND PrevQuarter1 > PrevQuarter2 AND PrevQuarter2 > PrevQuarter3;
โซ๏ธ List Customers Who Made Purchases in Each of the Last Three Years.
Schema: Orders (OrderID, CustomerID, OrderDate)
WITH YearlyOrders AS (
SELECT CustomerID,
EXTRACT(YEAR FROM OrderDate) AS OrderYear
FROM Orders
GROUP BY CustomerID, EXTRACT(YEAR FROM OrderDate)
),
RecentYears AS (
SELECT DISTINCT OrderYear
FROM Orders
WHERE OrderDate >= CURRENT_DATE - INTERVAL '3 years'
),
CustomerYearlyOrders AS (
SELECT CustomerID,
COUNT(DISTINCT OrderYear) AS YearCount
FROM YearlyOrders
WHERE OrderYear IN (SELECT OrderYear FROM RecentYears)
GROUP BY CustomerID
)
SELECT CustomerID
FROM CustomerYearlyOrders
WHERE YearCount = 3;
โซ๏ธ Find the Third Lowest Price for Each Product Category.
Schema: Products (ProductID, Name, CategoryID, Price)
WITH RankedPrices AS (
SELECT CategoryID,
Price,
DENSE_RANK() OVER (PARTITION BY CategoryID ORDER BY Price ASC) AS PriceRank
FROM Products
)
SELECT CategoryID, Price
FROM RankedPrices
WHERE PriceRank = 3;
โซ๏ธ Identify Products with Total Sales Exceeding a Specified Threshold Over the Last 30 Days.
Schema: Sales (SaleID, ProductID, SaleDate, Amount)
WITH RecentSales AS (
SELECT ProductID,
SUM(Amount) AS TotalSales
FROM Sales
WHERE SaleDate >= CURRENT_DATE - INTERVAL '30 days'
GROUP BY ProductID
)
SELECT ProductID, TotalSales
FROM RecentSales
WHERE TotalSales > 200;
Here you can find essential Interview Resources๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like this post if you need more ๐โค๏ธ
Hope it helps :)
๐1
Forwarded from Python Projects & Resources
๐ฐ ๐๐ฅ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ฏ๐ ๐๐ฎ๐ฟ๐๐ฎ๐ฟ๐ฑ ๐ฎ๐ป๐ฑ ๐ฆ๐๐ฎ๐ป๐ณ๐ผ๐ฟ๐ฑ ๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ป ๐๐๐
Dreaming of Mastering AI? ๐ฏ
Harvard and Stanfordโtwo of the most prestigious universities in the worldโare offering FREE AI courses๐จโ๐ป
No hidden fees, no long applicationsโjust pure, world-class education, accessible to everyone๐ฅ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3GqHkau
Hereโs your golden ticket to the future!โ
Dreaming of Mastering AI? ๐ฏ
Harvard and Stanfordโtwo of the most prestigious universities in the worldโare offering FREE AI courses๐จโ๐ป
No hidden fees, no long applicationsโjust pure, world-class education, accessible to everyone๐ฅ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3GqHkau
Hereโs your golden ticket to the future!โ
๐1