Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence
37.8K subscribers
283 photos
76 files
337 links
Free Datasets For Data Science Projects & Portfolio

Buy ads: https://telega.io/c/DataPortfolio

For Promotions/ads: @coderfun @love_data
Download Telegram
Learning Python for data science can be a rewarding experience. Here are some steps you can follow to get started:

1. Learn the Basics of Python: Start by learning the basics of Python programming language such as syntax, data types, functions, loops, and conditional statements. There are many online resources available for free to learn Python.

2. Understand Data Structures and Libraries: Familiarize yourself with data structures like lists, dictionaries, tuples, and sets. Also, learn about popular Python libraries used in data science such as NumPy, Pandas, Matplotlib, and Scikit-learn.

3. Practice with Projects: Start working on small data science projects to apply your knowledge. You can find datasets online to practice your skills and build your portfolio.

4. Take Online Courses: Enroll in online courses specifically tailored for learning Python for data science. Websites like Coursera, Udemy, and DataCamp offer courses on Python programming for data science.

5. Join Data Science Communities: Join online communities and forums like Stack Overflow, Reddit, or Kaggle to connect with other data science enthusiasts and get help with any questions you may have.

6. Read Books: There are many great books available on Python for data science that can help you deepen your understanding of the subject. Some popular books include "Python for Data Analysis" by Wes McKinney and "Data Science from Scratch" by Joel Grus.

7. Practice Regularly: Practice is key to mastering any skill. Make sure to practice regularly and work on real-world data science problems to improve your skills.

Remember that learning Python for data science is a continuous process, so be patient and persistent in your efforts. Good luck!

Please react ๐Ÿ‘โค๏ธ if you guys want me to share more of this content...
๐Ÿ‘3โค2๐Ÿ”ฅ1
Build your career in Data & AI!

I just signed up for Hack the Future: A Gen AI Sprint Powered by Dataโ€”a nationwide hackathon where you'll tackle real-world challenges using Data and AI. Itโ€™s a golden opportunity to work with industry experts, participate in hands-on workshops, and win exciting prizes.

Highly recommended for working professionals looking to upskill or transition into the AI/Data space.

If you're looking to level up your skills, network with like-minded folks, and boost your career, don't miss out!

Register now: https://gfgcdn.com/tu/UO5/
๐Ÿ‘4
๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—•๐—œ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ & ๐—˜๐—น๐—ฒ๐˜ƒ๐—ฎ๐˜๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜€๐—ต๐—ฏ๐—ผ๐—ฎ๐—ฟ๐—ฑ ๐—š๐—ฎ๐—บ๐—ฒ!๐Ÿ˜

Want to turn raw data into stunning visual stories?๐Ÿ“Š

Here are 6 FREE Power BI courses thatโ€™ll take you from beginner to proโ€”without spending a single rupee๐Ÿ’ฐ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4cwsGL2

Enjoy Learning โœ…๏ธ
๐Ÿ‘1
โŒจ๏ธ Hide secret message in image using Python
๐Ÿ”ฅ1
Python Data Science Essentials Third Edition

๐Ÿ““ Book
๐—œ๐—ป๐—ณ๐—ผ๐˜€๐˜†๐˜€ ๐Ÿญ๐Ÿฌ๐Ÿฌ% ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

Infosys Springboard is offering a wide range of 100% free courses with certificates to help you upskill and boost your resumeโ€”at no cost.

Whether youโ€™re a student, graduate, or working professional, this platform has something valuable for everyone.

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/4jsHZXf

Enroll For FREE & Get Certified ๐ŸŽ“
Here is the list of few projects (found on kaggle). They cover Basics of Python, Advanced Statistics, Supervised Learning (Regression and Classification problems) & Data Science

Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.

1. Basic python and statistics

Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset

2. Advanced Statistics

Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset

3. Supervised Learning

a) Regression Problems

How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview

b) Classification problems

Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking

4. Some helpful Data science projects for beginners

https://www.kaggle.com/c/house-prices-advanced-regression-techniques

https://www.kaggle.com/c/digit-recognizer

https://www.kaggle.com/c/titanic

5. Intermediate Level Data science Projects

Black Friday Data : https://www.kaggle.com/sdolezel/black-friday

Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones

Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset

Million Song Data : https://www.kaggle.com/c/msdchallenge

Census Income Data : https://www.kaggle.com/c/census-income/data

Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset

Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2

Share with credits: https://t.iss.one/sqlproject

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘3
๐Ÿฑ ๐—™๐—ฅ๐—˜๐—˜ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—™๐—ฟ๐—ผ๐—บ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜, ๐—”๐—ช๐—ฆ, ๐—œ๐—•๐— , ๐—–๐—ถ๐˜€๐—ฐ๐—ผ, ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐˜๐—ฎ๐—ป๐—ณ๐—ผ๐—ฟ๐—ฑ. ๐Ÿ˜

- Python
- Artificial Intelligence,
- Cybersecurity
- Cloud Computing, and
- Machine Learning

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/3E2wYNr

Enroll For FREE & Get Certified ๐ŸŽ“
๐Ÿ‘1๐Ÿ”ฅ1
Forwarded from Generative AI
๐Ÿฏ ๐—™๐—ฅ๐—˜๐—˜ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—”๐—œ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Taught by industry leaders (like Microsoft - 100% online and beginner-friendly

* Generative AI for Data Analysts
* Generative AI: Enhance Your Data Analytics Career
* Microsoft Generative AI for Data Analysis 

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/3R7asWB

Enroll Now & Get Certified ๐ŸŽ“
Here are 10 project ideas to work on for Data Analytics

1. Customer Churn Prediction: Predict customer churn for subscription-based services. Skills: EDA, classification models. Tools: Python, Scikit-Learn.
2. Retail Sales Forecasting: Forecast sales using historical data. Skills: Time series analysis. Tools: Python, Statsmodels.
3. Sentiment Analysis: Analyze sentiments in product reviews or tweets. Skills: Text processing, NLP. Tools: Python, NLTK.
4. Loan Approval Prediction: Predict loan approvals based on credit risk. Skills: Classification models. Tools: Python, Scikit-Learn.
5. COVID-19 Data Analysis: Explore and visualize COVID-19 trends. Skills: EDA, visualization. Tools: Python, Tableau.
6. Traffic Accident Analysis: Discover patterns in traffic accidents. Skills: Clustering, heatmaps. Tools: Python, Folium.
7. Movie Recommendation System: Build a recommendation system using user ratings. Skills: Collaborative filtering. Tools: Python, Scikit-Learn.
8. E-commerce Analysis: Analyze top-performing products in e-commerce. Skills: EDA, association rules. Tools: Python, Apriori.
9. Stock Market Analysis: Analyze stock trends using historical data. Skills: Moving averages, sentiment analysis. Tools: Python, Matplotlib.
10. Employee Attrition Analysis: Predict employee turnover. Skills: Classification models, HR analytics. Tools: Python, Scikit-Learn.

And this is how you can work on

Hereโ€™s a compact list of free resources for working on data analytics projects:

1. Datasets
โ€ข Kaggle Datasets: Wide range of datasets and community discussions.
โ€ข UCI Machine Learning Repository: Great for educational datasets.
โ€ข Data.gov: U.S. government datasets (e.g., traffic, COVID-19).
2. Learning Platforms
โ€ข YouTube: Channels like Data School and freeCodeCamp for tutorials.
โ€ข 365DataScience: Data Science & AI Related Courses
3. Tools
โ€ข Google Colab: Free Jupyter Notebooks for Python coding.
โ€ข Tableau Public & Power BI Desktop: Free data visualization tools.
4. Project Resources
โ€ข Kaggle Notebooks & GitHub: Code examples and project walk-throughs.
โ€ข Data Analytics on Medium: Project guides and tutorials.

ENJOY LEARNING โœ…๏ธโœ…๏ธ

#datascienceprojects
โค4๐Ÿ‘4
Emails Kaggle Data Sets.csv
1.3 GB
๐Ÿ“ฆ Datasets Name: Emails Datasets

โš™ Format: CSV file

๐Ÿ” From: Kaggle

https://t.iss.one/DataPortfolio
Best Alzheimer MRI dataset.zip
71.5 MB
๐Ÿ“ฆ Datasets name: Alzheimer MRI dataset

โš™ Format: images files

๐Ÿ” From: Kaggle
Retinopathy-Diabetes Dataset.zip
365.1 MB
๐Ÿ“ฆ Datasets name: Retinopathy & Diabetes Dataset

โš™ Format: images files

๐Ÿ” From: Kaggle

https://t.iss.one/DataPortfolio
Data_Science_from_Scratch_First_Principles_with_Python_by_Joel_Grus.pdf
10.8 MB
Data Science from Scratch First Principles with Python by Joel Grus z lib
๐Ÿ‘1
๐Ÿฐ ๐—™๐—ฅ๐—˜๐—˜ ๐—•๐—ฒ๐˜€๐˜ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐—ง๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—๐—ฎ๐˜ƒ๐—ฎ ๐—˜๐—ฎ๐˜€๐—ถ๐—น๐˜† ๐Ÿ˜

Level up your Java skills without getting overwhelmed

All of them are absolutely free, designed by experienced educators and top tech creators

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/3RvvP49

Enroll For FREE & Get Certified ๐ŸŽ“
๐Ÿ‘1
Top 5 Case Studies for Data Analytics: You Must Know Before Attending an Interview

1. Retail: Target's Predictive Analytics for Customer Behavior
Company: Target
Challenge: Target wanted to identify customers who were expecting a baby to send them personalized promotions.
Solution:
Target used predictive analytics to analyze customers' purchase history and identify patterns that indicated pregnancy.
They tracked purchases of items like unscented lotion, vitamins, and cotton balls.
Outcome:
The algorithm successfully identified pregnant customers, enabling Target to send them relevant promotions.
This personalized marketing strategy increased sales and customer loyalty.

2. Healthcare: IBM Watson's Oncology Treatment Recommendations
Company: IBM Watson
Challenge: Oncologists needed support in identifying the best treatment options for cancer patients.
Solution:
IBM Watson analyzed vast amounts of medical data, including patient records, clinical trials, and medical literature.
It provided oncologists with evidencebased treatment recommendations tailored to individual patients.
Outcome:
Improved treatment accuracy and personalized care for cancer patients.
Reduced time for doctors to develop treatment plans, allowing them to focus more on patient care.

3. Finance: JP Morgan Chase's Fraud Detection System
Company: JP Morgan Chase
Challenge: The bank needed to detect and prevent fraudulent transactions in realtime.
Solution:
Implemented advanced machine learning algorithms to analyze transaction patterns and detect anomalies.
The system flagged suspicious transactions for further investigation.
Outcome:
Significantly reduced fraudulent activities.
Enhanced customer trust and satisfaction due to improved security measures.

4. Sports: Oakland Athletics' Use of Sabermetrics
Team: Oakland Athletics (Moneyball)
Challenge: Compete with larger teams with higher budgets by optimizing player performance and team strategy.
Solution:
Used sabermetrics, a form of advanced statistical analysis, to evaluate player performance and potential.
Focused on undervalued players with high onbase percentages and other key metrics.
Outcome:
Achieved remarkable success with a limited budget.
Revolutionized the approach to team building and player evaluation in baseball and other sports.

5. Ecommerce: Amazon's Recommendation Engine
Company: Amazon
Challenge: Enhance customer shopping experience and increase sales through personalized recommendations.
Solution:
Implemented a recommendation engine using collaborative filtering, which analyzes user behavior and purchase history.
The system suggests products based on what similar users have bought.
Outcome:
Increased average order value and customer retention.
Significantly contributed to Amazon's revenue growth through crossselling and upselling.

Like if it helps ๐Ÿ˜„
๐Ÿ‘1
๐Ÿฏ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น ๐—จ๐—ฝ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Want to build your tech career without breaking the bank?๐Ÿ’ฐ

These 3 completely free courses are all you need to begin your journey in programming and data analysis๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3EtHnBI

Learn at your own pace, sharpen your skills, and showcase your progress on LinkedIn or your resume. Letโ€™s dive in!โœ…๏ธ
๐Ÿ‘1
How to Reach Recruiters on LinkedIn (The Smart Way!) ๐Ÿ’ผโœจ

Looking for a job? Want to get noticed by recruiters?

Hereโ€™s how you can professionally reach out and actually get a response ๐Ÿ‘‡

โœ… 1. Polish Your Profile First
Your profile is your first impression โ€” make it count!
๐Ÿ“Œ Use a professional photo
๐Ÿ“Œ Write a clear, concise headline
๐Ÿ“Œ Highlight your key skills & experience
๐Ÿ“Œ Add a compelling โ€œAboutโ€ section

โœ… 2. Search for the Right Recruiters
Use keywords like:

๐Ÿ”น โ€œRecruiter + [Company Name]โ€
๐Ÿ”น โ€œTalent Acquisition + [Domain/Role]โ€
This helps you connect with recruiters relevant to your field.

โœ… 3. Send a Personal Connection Request ๐Ÿ“จ


Donโ€™t just hit Connect โ€” always add a note! Here's a simple format:

โ€œHi [Name], I admire the work your team is doing at [Company]. Iโ€™m exploring opportunities in [role/domain] and would love to connect with you. Thanks in advance!โ€

โœ… 4. Engage Before You Message
Like their posts. Leave thoughtful comments. Show up on their radar before starting a conversation. ๐Ÿ‘€

โœ… 5. Donโ€™t Immediately Ask for a Job โŒ

Build a connection first. Instead, ask: ๐Ÿ’ฌ โ€œCould you share what qualities you usually look for in [role] candidates?โ€
This shows initiative without pressure.

โœ… 6. Follow Up Respectfully ๐Ÿ”

If you donโ€™t get a response, follow up once after a few days.
Keep it short, friendly, and respectful. Patience pays.

โœ… 7. Be Active & Consistent ๐Ÿ“ฃ

Post updates, share your learnings, and interact with industry content.
Recruiters often notice candidates who are visible and engaged!

๐Ÿ’ก Remember: LinkedIn is not just about job hunting โ€“ it's about building professional relationships.


Stay genuine. Stay professional. Stay consistent. ๐ŸŒŸ

โœจ You never know which message could change your career path.
๐Ÿ‘4
๐—”๐—œ & ๐— ๐—Ÿ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿ˜

Qualcommโ€”a global tech giant offering completely FREE courses that you can access anytime, anywhere.

โœ… 100% Free โ€” No hidden charges, subscriptions, or trials
โœ… Created by Industry Experts
โœ… Self-paced & Online โ€” Learn from anywhere, anytime

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/3YrFTyK

Enroll Now & Get Certified ๐ŸŽ“
๐Ÿ‘1