Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence
37.8K subscribers
283 photos
76 files
337 links
Free Datasets For Data Science Projects & Portfolio

Buy ads: https://telega.io/c/DataPortfolio

For Promotions/ads: @coderfun @love_data
Download Telegram
๐—›๐—ผ๐˜„ ๐˜๐—ผ ๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ ๐—™๐—ถ๐—ป๐—ฎ๐—ป๐—ฐ๐—ถ๐—ฎ๐—น ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Want to break into Financial Data Analytics but donโ€™t know where to start?

Hereโ€™s your ultimate step-by-step roadmap to landing a job in this high-demand field.

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/42aGUwb

๐ŸŽฏ ๐Ÿš€ Ready to Start?
โค1๐Ÿ‘1
๐Ÿšจ30 FREE Dataset Sources for Data Science Projects๐Ÿ”ฅ

Data Simplifier: https://datasimplifier.com/best-data-analyst-projects-for-freshers/

US Government Dataset: https://www.data.gov/

Open Government Data (OGD) Platform India: https://data.gov.in/

The World Bank Open Data: https://data.worldbank.org/

Data World: https://data.world/

BFI - Industry Data and Insights: https://www.bfi.org.uk/data-statistics

The Humanitarian Data Exchange (HDX): https://data.humdata.org/

Data at World Health Organization (WHO): https://www.who.int/data

FBIโ€™s Crime Data Explorer: https://crime-data-explorer.fr.cloud.gov/

AWS Open Data Registry: https://registry.opendata.aws/

FiveThirtyEight: https://data.fivethirtyeight.com/

IMDb Datasets: https://www.imdb.com/interfaces/

Kaggle: https://www.kaggle.com/datasets

UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/index.php

Google Dataset Search: https://datasetsearch.research.google.com/

Nasdaq Data Link: https://data.nasdaq.com/

Recommender Systems and Personalization Datasets: https://cseweb.ucsd.edu/~jmcauley/datasets.html

Reddit - Datasets: https://www.reddit.com/r/datasets/

Open Data Network by Socrata: https://www.opendatanetwork.com/

Climate Data Online by NOAA: https://www.ncdc.noaa.gov/cdo-web/

Azure Open Datasets: https://azure.microsoft.com/en-us/services/open-datasets/

IEEE Data Port: https://ieee-dataport.org/

Wikipedia: Database: https://dumps.wikimedia.org/

BuzzFeed News: https://github.com/BuzzFeedNews/everything

Academic Torrents: https://academictorrents.com/

Yelp Open Dataset: https://www.yelp.com/dataset

The NLP Index by Quantum Stat: https://index.quantumstat.com/

Computer Vision Online: https://www.computervisiononline.com/dataset

Visual Data Discovery: https://www.visualdata.io/

Roboflow Public Datasets: https://public.roboflow.com/

Computer Vision Group, TUM: https://vision.in.tum.de/data/datasets
โค4๐Ÿ‘1
6 Tips for Building a Robust Machine Learning Model

1. Understand the problem thoroughly before jumping into the model.
โž Taking time to understand the problem helps build a solution aligned with business needs and goals.

2. Focus on feature engineering to improve accuracy.
โž Well-engineered features make a big difference in model performance. Collaborating with data engineers on clean and well-structured data can simplify feature engineering.

3. Start simple, test assumptions, and iterate.
โž Begin with straightforward models to test ideas quickly. Iteration and experimentation will lead to stronger results.

4. Keep track of versions for reproducibility. 
โž  Documenting versions of data and code helps maintain consistency, making it easier to reproduce results.

5. Regularly validate your model with new data.
โž Models should be updated and validated as new data becomes available to avoid performance degradation.

6. Always prioritize interpretability alongside accuracy.
โž Building interpretable models helps stakeholders understand and trust your results, making insights more actionable.

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
๐Ÿ‘7
๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜ 

Learn AI for FREE with these incredible courses by Google!

Whether youโ€™re a beginner or looking to sharpen your skills, these resources will help you stay ahead in the tech game.

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 

https://pdlink.in/3FYbfGR

Enroll For FREE & Get Certified๐ŸŽ“
๐Ÿ‘2โค1
Top 5 data science projects for freshers

1. Predictive Analytics on a Dataset:
- Use a dataset to predict future trends or outcomes using machine learning algorithms. This could involve predicting sales, stock prices, or any other relevant domain.

2. Customer Segmentation:
- Analyze and segment customers based on their behavior, preferences, or demographics. This project could provide insights for targeted marketing strategies.

3. Sentiment Analysis on Social Media Data:
- Analyze sentiment in social media data to understand public opinion on a particular topic. This project helps in mastering natural language processing (NLP) techniques.

4. Recommendation System:
- Build a recommendation system, perhaps for movies, music, or products, using collaborative filtering or content-based filtering methods.

5. Fraud Detection:
- Develop a fraud detection system using machine learning algorithms to identify anomalous patterns in financial transactions or any domain where fraud detection is crucial.

Free Datsets -> https://t.iss.one/DataPortfolio/2?single

These projects showcase practical application of data science skills and can be highlighted on a resume for entry-level positions.

Join @pythonspecialist for more data science projects
โค2๐Ÿ‘1
Forwarded from Artificial Intelligence
๐Ÿฐ ๐—™๐—ฅ๐—˜๐—˜ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜ 

These free, Microsoft-backed courses are a game-changer!

With these resources, youโ€™ll gain the skills and confidence needed to shine in the data analytics worldโ€”all without spending a penny.

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 

https://pdlink.in/4jpmI0I

Enroll For FREE & Get Certified๐ŸŽ“
๐Ÿ‘1
Learning Python for data science can be a rewarding experience. Here are some steps you can follow to get started:

1. Learn the Basics of Python: Start by learning the basics of Python programming language such as syntax, data types, functions, loops, and conditional statements. There are many online resources available for free to learn Python.

2. Understand Data Structures and Libraries: Familiarize yourself with data structures like lists, dictionaries, tuples, and sets. Also, learn about popular Python libraries used in data science such as NumPy, Pandas, Matplotlib, and Scikit-learn.

3. Practice with Projects: Start working on small data science projects to apply your knowledge. You can find datasets online to practice your skills and build your portfolio.

4. Take Online Courses: Enroll in online courses specifically tailored for learning Python for data science. Websites like Coursera, Udemy, and DataCamp offer courses on Python programming for data science.

5. Join Data Science Communities: Join online communities and forums like Stack Overflow, Reddit, or Kaggle to connect with other data science enthusiasts and get help with any questions you may have.

6. Read Books: There are many great books available on Python for data science that can help you deepen your understanding of the subject. Some popular books include "Python for Data Analysis" by Wes McKinney and "Data Science from Scratch" by Joel Grus.

7. Practice Regularly: Practice is key to mastering any skill. Make sure to practice regularly and work on real-world data science problems to improve your skills.

Remember that learning Python for data science is a continuous process, so be patient and persistent in your efforts. Good luck!

Please react ๐Ÿ‘โค๏ธ if you guys want me to share more of this content...
๐Ÿ‘3โค2๐Ÿ”ฅ1
Build your career in Data & AI!

I just signed up for Hack the Future: A Gen AI Sprint Powered by Dataโ€”a nationwide hackathon where you'll tackle real-world challenges using Data and AI. Itโ€™s a golden opportunity to work with industry experts, participate in hands-on workshops, and win exciting prizes.

Highly recommended for working professionals looking to upskill or transition into the AI/Data space.

If you're looking to level up your skills, network with like-minded folks, and boost your career, don't miss out!

Register now: https://gfgcdn.com/tu/UO5/
๐Ÿ‘4
๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—•๐—œ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ & ๐—˜๐—น๐—ฒ๐˜ƒ๐—ฎ๐˜๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜€๐—ต๐—ฏ๐—ผ๐—ฎ๐—ฟ๐—ฑ ๐—š๐—ฎ๐—บ๐—ฒ!๐Ÿ˜

Want to turn raw data into stunning visual stories?๐Ÿ“Š

Here are 6 FREE Power BI courses thatโ€™ll take you from beginner to proโ€”without spending a single rupee๐Ÿ’ฐ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4cwsGL2

Enjoy Learning โœ…๏ธ
๐Ÿ‘1
โŒจ๏ธ Hide secret message in image using Python
๐Ÿ”ฅ1
Python Data Science Essentials Third Edition

๐Ÿ““ Book
๐—œ๐—ป๐—ณ๐—ผ๐˜€๐˜†๐˜€ ๐Ÿญ๐Ÿฌ๐Ÿฌ% ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

Infosys Springboard is offering a wide range of 100% free courses with certificates to help you upskill and boost your resumeโ€”at no cost.

Whether youโ€™re a student, graduate, or working professional, this platform has something valuable for everyone.

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/4jsHZXf

Enroll For FREE & Get Certified ๐ŸŽ“
Here is the list of few projects (found on kaggle). They cover Basics of Python, Advanced Statistics, Supervised Learning (Regression and Classification problems) & Data Science

Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.

1. Basic python and statistics

Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset

2. Advanced Statistics

Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset

3. Supervised Learning

a) Regression Problems

How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview

b) Classification problems

Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking

4. Some helpful Data science projects for beginners

https://www.kaggle.com/c/house-prices-advanced-regression-techniques

https://www.kaggle.com/c/digit-recognizer

https://www.kaggle.com/c/titanic

5. Intermediate Level Data science Projects

Black Friday Data : https://www.kaggle.com/sdolezel/black-friday

Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones

Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset

Million Song Data : https://www.kaggle.com/c/msdchallenge

Census Income Data : https://www.kaggle.com/c/census-income/data

Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset

Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2

Share with credits: https://t.iss.one/sqlproject

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘3
๐Ÿฑ ๐—™๐—ฅ๐—˜๐—˜ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—™๐—ฟ๐—ผ๐—บ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜, ๐—”๐—ช๐—ฆ, ๐—œ๐—•๐— , ๐—–๐—ถ๐˜€๐—ฐ๐—ผ, ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐˜๐—ฎ๐—ป๐—ณ๐—ผ๐—ฟ๐—ฑ. ๐Ÿ˜

- Python
- Artificial Intelligence,
- Cybersecurity
- Cloud Computing, and
- Machine Learning

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/3E2wYNr

Enroll For FREE & Get Certified ๐ŸŽ“
๐Ÿ‘1๐Ÿ”ฅ1
Forwarded from Generative AI
๐Ÿฏ ๐—™๐—ฅ๐—˜๐—˜ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—”๐—œ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Taught by industry leaders (like Microsoft - 100% online and beginner-friendly

* Generative AI for Data Analysts
* Generative AI: Enhance Your Data Analytics Career
* Microsoft Generative AI for Data Analysis 

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/3R7asWB

Enroll Now & Get Certified ๐ŸŽ“
Here are 10 project ideas to work on for Data Analytics

1. Customer Churn Prediction: Predict customer churn for subscription-based services. Skills: EDA, classification models. Tools: Python, Scikit-Learn.
2. Retail Sales Forecasting: Forecast sales using historical data. Skills: Time series analysis. Tools: Python, Statsmodels.
3. Sentiment Analysis: Analyze sentiments in product reviews or tweets. Skills: Text processing, NLP. Tools: Python, NLTK.
4. Loan Approval Prediction: Predict loan approvals based on credit risk. Skills: Classification models. Tools: Python, Scikit-Learn.
5. COVID-19 Data Analysis: Explore and visualize COVID-19 trends. Skills: EDA, visualization. Tools: Python, Tableau.
6. Traffic Accident Analysis: Discover patterns in traffic accidents. Skills: Clustering, heatmaps. Tools: Python, Folium.
7. Movie Recommendation System: Build a recommendation system using user ratings. Skills: Collaborative filtering. Tools: Python, Scikit-Learn.
8. E-commerce Analysis: Analyze top-performing products in e-commerce. Skills: EDA, association rules. Tools: Python, Apriori.
9. Stock Market Analysis: Analyze stock trends using historical data. Skills: Moving averages, sentiment analysis. Tools: Python, Matplotlib.
10. Employee Attrition Analysis: Predict employee turnover. Skills: Classification models, HR analytics. Tools: Python, Scikit-Learn.

And this is how you can work on

Hereโ€™s a compact list of free resources for working on data analytics projects:

1. Datasets
โ€ข Kaggle Datasets: Wide range of datasets and community discussions.
โ€ข UCI Machine Learning Repository: Great for educational datasets.
โ€ข Data.gov: U.S. government datasets (e.g., traffic, COVID-19).
2. Learning Platforms
โ€ข YouTube: Channels like Data School and freeCodeCamp for tutorials.
โ€ข 365DataScience: Data Science & AI Related Courses
3. Tools
โ€ข Google Colab: Free Jupyter Notebooks for Python coding.
โ€ข Tableau Public & Power BI Desktop: Free data visualization tools.
4. Project Resources
โ€ข Kaggle Notebooks & GitHub: Code examples and project walk-throughs.
โ€ข Data Analytics on Medium: Project guides and tutorials.

ENJOY LEARNING โœ…๏ธโœ…๏ธ

#datascienceprojects
โค4๐Ÿ‘4