NumPy_SciPy_Pandas_Quandl_Cheat_Sheet.pdf
134.6 KB
Cheatsheet on Numpy and pandas for easy viewing ๐
ibm_machine_learning_for_dummies.pdf
1.8 MB
Short Machine Learning guide on industry applications and how itโs used to resolve problems ๐ก
1663243982009.pdf
349.9 KB
All SQL solutions for leetcode, good luck grinding ๐ซฃ
git-cheat-sheet-education.pdf
97.8 KB
Git commands cheatsheets for anyone working on personal projects on GitHub! ๐พ
1655183344172.pdf
333.8 KB
Algorithmic concepts for anyone who is taking Data Structure and Algorithms, or interested in algorithmic trading ๐
๐5โค2
๐ญ๐ฌ๐ฌ% ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
Master Python, Machine Learning, SQL, and Data Visualization with hands-on tutorials & real-world datasets? ๐ฏ
This 100% FREE resource from Kaggle will help you build job-ready skillsโno fluff, no fees, just pure learning!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3XYAnDy
Perfect for Beginners โ ๏ธ
Master Python, Machine Learning, SQL, and Data Visualization with hands-on tutorials & real-world datasets? ๐ฏ
This 100% FREE resource from Kaggle will help you build job-ready skillsโno fluff, no fees, just pure learning!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3XYAnDy
Perfect for Beginners โ ๏ธ
Here are five of the most commonly used SQL queries in data science:
1. SELECT and FROM Clauses
- Basic data retrieval:
2. WHERE Clause
- Filtering data:
3. GROUP BY and Aggregate Functions
- Summarizing data:
4. JOIN Operations
- Combining data from multiple tables:
5. Subqueries and Nested Queries
- Advanced data retrieval:
Like for more โค๏ธ
Hope it helps :)
1. SELECT and FROM Clauses
- Basic data retrieval:
SELECT column1, column2 FROM table_name;
2. WHERE Clause
- Filtering data:
SELECT * FROM table_name WHERE condition;
3. GROUP BY and Aggregate Functions
- Summarizing data:
SELECT column1, COUNT(*), AVG(column2) FROM table_name GROUP BY column1;
4. JOIN Operations
- Combining data from multiple tables:
SELECT a.column1, b.column2
FROM table1 a
JOIN table2 b ON a.common_column = b.common_column;
5. Subqueries and Nested Queries
- Advanced data retrieval:
SELECT column1
FROM table_name
WHERE column2 IN (SELECT column2 FROM another_table WHERE condition);
Like for more โค๏ธ
Hope it helps :)
๐2
๐ง๐ผ๐ฝ ๐ฐ๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐ ๐ข๐ณ๐ณ๐ฒ๐ฟ๐ถ๐ป๐ด ๐๐ฅ๐๐ ๐๐ถ๐ฟ๐๐๐ฎ๐น ๐ฒ๐
๐ฝ๐ฒ๐ฟ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ฝ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ๐๐
Want to work on real industry tasks, develop in-demand skills, and boost your resumeโall for FREE?
Your dream career starts with real experienceโgrab this opportunity today!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4bCyUIM
๐ก No experience requiredโjust learn, upskill & build your portfolio! ๐
Want to work on real industry tasks, develop in-demand skills, and boost your resumeโall for FREE?
Your dream career starts with real experienceโgrab this opportunity today!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4bCyUIM
๐ก No experience requiredโjust learn, upskill & build your portfolio! ๐
Free Datasets to work on Power BI + SQL projects ๐๐
1. AdventureWorks Sample Database:
- Link: [AdventureWorks Sample Database](https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15)
- Description: A sample database provided by Microsoft, containing sales, products, customers, and other related data.
2. Online Retail Dataset:
- Link: [UCI Machine Learning Repository - Online Retail Dataset](https://archive.ics.uci.edu/ml/datasets/online+retail)
- Description: Transactional data from an online retail store, suitable for customer segmentation and sales analysis.
3. Supermarket Sales Dataset:
- Link: [Supermarket Sales Dataset](https://www.kaggle.com/aungpyaeap/supermarket-sales)
- Description: Sales data from a supermarket, useful for inventory management and sales performance analysis.
4. Yahoo Finance (Historical Stock Data):
- Link: [Yahoo Finance](https://finance.yahoo.com/)
- Description: Historical stock data for various companies, suitable for financial analysis and visualization.
5. Human Resources Analytics: Employee Attrition and Performance:
- Link: [Kaggle HR Analytics Dataset](https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset)
- Description: Employee data including demographics, performance, and attrition information, suitable for employee performance analysis.
Bonus Open Sources Resources: https://t.iss.one/DataPortfolio/16
These datasets are freely available for practicing Power BI and SQL skills. You can download them from the provided links and import them into your SQL database management system (e.g., MySQL, SQL Server, PostgreSQL) for hands-on โบ๏ธ๐ช
1. AdventureWorks Sample Database:
- Link: [AdventureWorks Sample Database](https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15)
- Description: A sample database provided by Microsoft, containing sales, products, customers, and other related data.
2. Online Retail Dataset:
- Link: [UCI Machine Learning Repository - Online Retail Dataset](https://archive.ics.uci.edu/ml/datasets/online+retail)
- Description: Transactional data from an online retail store, suitable for customer segmentation and sales analysis.
3. Supermarket Sales Dataset:
- Link: [Supermarket Sales Dataset](https://www.kaggle.com/aungpyaeap/supermarket-sales)
- Description: Sales data from a supermarket, useful for inventory management and sales performance analysis.
4. Yahoo Finance (Historical Stock Data):
- Link: [Yahoo Finance](https://finance.yahoo.com/)
- Description: Historical stock data for various companies, suitable for financial analysis and visualization.
5. Human Resources Analytics: Employee Attrition and Performance:
- Link: [Kaggle HR Analytics Dataset](https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset)
- Description: Employee data including demographics, performance, and attrition information, suitable for employee performance analysis.
Bonus Open Sources Resources: https://t.iss.one/DataPortfolio/16
These datasets are freely available for practicing Power BI and SQL skills. You can download them from the provided links and import them into your SQL database management system (e.g., MySQL, SQL Server, PostgreSQL) for hands-on โบ๏ธ๐ช
๐3
Best 5 data analyst projects for freshers with free certification
๐๐
https://datasimplifier.com/best-data-analyst-projects-for-freshers/
๐๐
https://datasimplifier.com/best-data-analyst-projects-for-freshers/
๐1
Forwarded from Generative AI
๐ฑ ๐๐ฅ๐๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐
Whether youโre a complete beginner or looking to level up, these courses cover Excel, Power BI, Data Science, and Real-World Analytics Projects to make you job-ready.
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3DPkrga
All The Best ๐
Whether youโre a complete beginner or looking to level up, these courses cover Excel, Power BI, Data Science, and Real-World Analytics Projects to make you job-ready.
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3DPkrga
All The Best ๐
๐1
Free Datasets to work on Power BI + SQL projects ๐๐
1. AdventureWorks Sample Database:
- Link: [AdventureWorks Sample Database](https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15)
- Description: A sample database provided by Microsoft, containing sales, products, customers, and other related data.
2. Online Retail Dataset:
- Link: [UCI Machine Learning Repository - Online Retail Dataset](https://archive.ics.uci.edu/ml/datasets/online+retail)
- Description: Transactional data from an online retail store, suitable for customer segmentation and sales analysis.
3. Supermarket Sales Dataset:
- Link: [Supermarket Sales Dataset](https://www.kaggle.com/aungpyaeap/supermarket-sales)
- Description: Sales data from a supermarket, useful for inventory management and sales performance analysis.
4. Yahoo Finance (Historical Stock Data):
- Link: [Yahoo Finance](https://finance.yahoo.com/)
- Description: Historical stock data for various companies, suitable for financial analysis and visualization.
5. Human Resources Analytics: Employee Attrition and Performance:
- Link: [Kaggle HR Analytics Dataset](https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset)
- Description: Employee data including demographics, performance, and attrition information, suitable for employee performance analysis.
Bonus Open Sources Resources: https://t.iss.one/DataPortfolio/16
These datasets are freely available for practicing Power BI and SQL skills. You can download them from the provided links and import them into your SQL database management system (e.g., MySQL, SQL Server, PostgreSQL) for hands-on โบ๏ธ๐ช
1. AdventureWorks Sample Database:
- Link: [AdventureWorks Sample Database](https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15)
- Description: A sample database provided by Microsoft, containing sales, products, customers, and other related data.
2. Online Retail Dataset:
- Link: [UCI Machine Learning Repository - Online Retail Dataset](https://archive.ics.uci.edu/ml/datasets/online+retail)
- Description: Transactional data from an online retail store, suitable for customer segmentation and sales analysis.
3. Supermarket Sales Dataset:
- Link: [Supermarket Sales Dataset](https://www.kaggle.com/aungpyaeap/supermarket-sales)
- Description: Sales data from a supermarket, useful for inventory management and sales performance analysis.
4. Yahoo Finance (Historical Stock Data):
- Link: [Yahoo Finance](https://finance.yahoo.com/)
- Description: Historical stock data for various companies, suitable for financial analysis and visualization.
5. Human Resources Analytics: Employee Attrition and Performance:
- Link: [Kaggle HR Analytics Dataset](https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset)
- Description: Employee data including demographics, performance, and attrition information, suitable for employee performance analysis.
Bonus Open Sources Resources: https://t.iss.one/DataPortfolio/16
These datasets are freely available for practicing Power BI and SQL skills. You can download them from the provided links and import them into your SQL database management system (e.g., MySQL, SQL Server, PostgreSQL) for hands-on โบ๏ธ๐ช
๐3
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ฃ๐น๐ฎ๐ป๐ ๐๐ผ ๐จ๐ฝ๐๐ธ๐ถ๐น๐น ๐ถ๐ป ๐ง๐ฒ๐ฐ๐ต & ๐๐!๐
Looking to boost your tech career?๐
These free learning plans will help you stay ahead in DevOps, AI, Cloud Security, Data Analytics, and Machine Learning!๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ijtDI2
Perfect for Beginners & Professionals Looking to Upskill!โ ๏ธ
Looking to boost your tech career?๐
These free learning plans will help you stay ahead in DevOps, AI, Cloud Security, Data Analytics, and Machine Learning!๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ijtDI2
Perfect for Beginners & Professionals Looking to Upskill!โ ๏ธ
๐1
Here are two amazing SQL Projects for data analytics ๐๐
Calculating Free-to-Paid Conversion Rate with SQL Project
Career Track Analysis with SQL and Tableau Project
Like this post if you need more data analytics projects in the channel ๐
Hope it helps :)
Calculating Free-to-Paid Conversion Rate with SQL Project
Career Track Analysis with SQL and Tableau Project
Like this post if you need more data analytics projects in the channel ๐
Hope it helps :)
๐7
๐ ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ณ๐ฟ๐ผ๐บ ๐ข๐ฝ๐ฒ๐ป ๐จ๐ป๐ถ๐๐ฒ๐ฟ๐๐ถ๐๐ โ ๐๐ฒ๐ฎ๐ฟ๐ป, ๐๐ฟ๐ผ๐ & ๐จ๐ฝ๐๐ธ๐ถ๐น๐น!๐
If youโre just starting your learning journey or looking to level up your skillsโthis is your golden opportunity! ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4cuo73X
โณ Donโt miss outโbookmark this for later!
If youโre just starting your learning journey or looking to level up your skillsโthis is your golden opportunity! ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4cuo73X
โณ Donโt miss outโbookmark this for later!
๐3
๐ Key Skills for Aspiring Tech Specialists
๐ Data Analyst:
- Proficiency in SQL for database querying
- Advanced Excel for data manipulation
- Programming with Python or R for data analysis
- Statistical analysis to understand data trends
- Data visualization tools like Tableau or PowerBI
- Data preprocessing to clean and structure data
- Exploratory data analysis techniques
๐ง Data Scientist:
- Strong knowledge of Python and R for statistical analysis
- Machine learning for predictive modeling
- Deep understanding of mathematics and statistics
- Data wrangling to prepare data for analysis
- Big data platforms like Hadoop or Spark
- Data visualization and communication skills
- Experience with A/B testing frameworks
๐ Data Engineer:
- Expertise in SQL and NoSQL databases
- Experience with data warehousing solutions
- ETL (Extract, Transform, Load) process knowledge
- Familiarity with big data tools (e.g., Apache Spark)
- Proficient in Python, Java, or Scala
- Knowledge of cloud services like AWS, GCP, or Azure
- Understanding of data pipeline and workflow management tools
๐ค Machine Learning Engineer:
- Proficiency in Python and libraries like scikit-learn, TensorFlow
- Solid understanding of machine learning algorithms
- Experience with neural networks and deep learning frameworks
- Ability to implement models and fine-tune their parameters
- Knowledge of software engineering best practices
- Data modeling and evaluation strategies
- Strong mathematical skills, particularly in linear algebra and calculus
๐ง Deep Learning Engineer:
- Expertise in deep learning frameworks like TensorFlow or PyTorch
- Understanding of Convolutional and Recurrent Neural Networks
- Experience with GPU computing and parallel processing
- Familiarity with computer vision and natural language processing
- Ability to handle large datasets and train complex models
- Research mindset to keep up with the latest developments in deep learning
๐คฏ AI Engineer:
- Solid foundation in algorithms, logic, and mathematics
- Proficiency in programming languages like Python or C++
- Experience with AI technologies including ML, neural networks, and cognitive computing
- Understanding of AI model deployment and scaling
- Knowledge of AI ethics and responsible AI practices
- Strong problem-solving and analytical skills
๐ NLP Engineer:
- Background in linguistics and language models
- Proficiency with NLP libraries (e.g., NLTK, spaCy)
- Experience with text preprocessing and tokenization
- Understanding of sentiment analysis, text classification, and named entity recognition
- Familiarity with transformer models like BERT and GPT
- Ability to work with large text datasets and sequential data
๐ Data Analyst:
- Proficiency in SQL for database querying
- Advanced Excel for data manipulation
- Programming with Python or R for data analysis
- Statistical analysis to understand data trends
- Data visualization tools like Tableau or PowerBI
- Data preprocessing to clean and structure data
- Exploratory data analysis techniques
๐ง Data Scientist:
- Strong knowledge of Python and R for statistical analysis
- Machine learning for predictive modeling
- Deep understanding of mathematics and statistics
- Data wrangling to prepare data for analysis
- Big data platforms like Hadoop or Spark
- Data visualization and communication skills
- Experience with A/B testing frameworks
๐ Data Engineer:
- Expertise in SQL and NoSQL databases
- Experience with data warehousing solutions
- ETL (Extract, Transform, Load) process knowledge
- Familiarity with big data tools (e.g., Apache Spark)
- Proficient in Python, Java, or Scala
- Knowledge of cloud services like AWS, GCP, or Azure
- Understanding of data pipeline and workflow management tools
๐ค Machine Learning Engineer:
- Proficiency in Python and libraries like scikit-learn, TensorFlow
- Solid understanding of machine learning algorithms
- Experience with neural networks and deep learning frameworks
- Ability to implement models and fine-tune their parameters
- Knowledge of software engineering best practices
- Data modeling and evaluation strategies
- Strong mathematical skills, particularly in linear algebra and calculus
๐ง Deep Learning Engineer:
- Expertise in deep learning frameworks like TensorFlow or PyTorch
- Understanding of Convolutional and Recurrent Neural Networks
- Experience with GPU computing and parallel processing
- Familiarity with computer vision and natural language processing
- Ability to handle large datasets and train complex models
- Research mindset to keep up with the latest developments in deep learning
๐คฏ AI Engineer:
- Solid foundation in algorithms, logic, and mathematics
- Proficiency in programming languages like Python or C++
- Experience with AI technologies including ML, neural networks, and cognitive computing
- Understanding of AI model deployment and scaling
- Knowledge of AI ethics and responsible AI practices
- Strong problem-solving and analytical skills
๐ NLP Engineer:
- Background in linguistics and language models
- Proficiency with NLP libraries (e.g., NLTK, spaCy)
- Experience with text preprocessing and tokenization
- Understanding of sentiment analysis, text classification, and named entity recognition
- Familiarity with transformer models like BERT and GPT
- Ability to work with large text datasets and sequential data
๐8โค1
๐ฐ ๐๐ฅ๐๐ ๐ฆ๐ค๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐
- Introduction to SQL (Simplilearn)
- Intro to SQL (Kaggle)
- Introduction to Database & SQL Querying
- SQL for Beginners โ Microsoft SQL Server
Start Learning Today โ 4 Free SQL Courses
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/42nUsWr
Enroll For FREE & Get Certified ๐
- Introduction to SQL (Simplilearn)
- Intro to SQL (Kaggle)
- Introduction to Database & SQL Querying
- SQL for Beginners โ Microsoft SQL Server
Start Learning Today โ 4 Free SQL Courses
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/42nUsWr
Enroll For FREE & Get Certified ๐
๐3
Python Interview Questions for Data/Business Analysts:
Question 1:
Given a dataset in a CSV file, how would you read it into a Pandas DataFrame? And how would you handle missing values?
Question 2:
Describe the difference between a list, a tuple, and a dictionary in Python. Provide an example for each.
Question 3:
Imagine you are provided with two datasets, 'sales_data' and 'product_data', both in the form of Pandas DataFrames. How would you merge these datasets on a common column named 'ProductID'?
Question 4:
How would you handle duplicate rows in a Pandas DataFrame? Write a Python code snippet to demonstrate.
Question 5:
Describe the difference between '.iloc[] and '.loc[]' in the context of Pandas.
Question 6:
In Python's Matplotlib library, how would you plot a line chart to visualize monthly sales? Assume you have a list of months and a list of corresponding sales numbers.
Question 7:
How would you use Python to connect to a SQL database and fetch data into a Pandas DataFrame?
Question 8:
Explain the concept of list comprehensions in Python. Can you provide an example where it's useful for data analysis?
Question 9:
How would you reshape a long-format DataFrame to a wide format using Pandas? Explain with an example.
Question 10:
What are lambda functions in Python? How are they beneficial in data wrangling tasks?
Question 11:
Describe a scenario where you would use the 'groupby()' method in Pandas. How would you aggregate data after grouping?
Question 12:
You are provided with a Pandas DataFrame that contains a column with date strings. How would you convert this column to a datetime format? Additionally, how would you extract the month and year from these datetime objects?
Question 13:
Explain the purpose of the 'pivot_table' method in Pandas and describe a business scenario where it might be useful.
Question 14:
How would you handle large datasets that don't fit into memory? Are you familiar with Dask or any similar libraries?
Python Interview Q&A: https://topmate.io/coding/898340
Like for more โค๏ธ
ENJOY LEARNING ๐๐
Question 1:
Given a dataset in a CSV file, how would you read it into a Pandas DataFrame? And how would you handle missing values?
Question 2:
Describe the difference between a list, a tuple, and a dictionary in Python. Provide an example for each.
Question 3:
Imagine you are provided with two datasets, 'sales_data' and 'product_data', both in the form of Pandas DataFrames. How would you merge these datasets on a common column named 'ProductID'?
Question 4:
How would you handle duplicate rows in a Pandas DataFrame? Write a Python code snippet to demonstrate.
Question 5:
Describe the difference between '.iloc[] and '.loc[]' in the context of Pandas.
Question 6:
In Python's Matplotlib library, how would you plot a line chart to visualize monthly sales? Assume you have a list of months and a list of corresponding sales numbers.
Question 7:
How would you use Python to connect to a SQL database and fetch data into a Pandas DataFrame?
Question 8:
Explain the concept of list comprehensions in Python. Can you provide an example where it's useful for data analysis?
Question 9:
How would you reshape a long-format DataFrame to a wide format using Pandas? Explain with an example.
Question 10:
What are lambda functions in Python? How are they beneficial in data wrangling tasks?
Question 11:
Describe a scenario where you would use the 'groupby()' method in Pandas. How would you aggregate data after grouping?
Question 12:
You are provided with a Pandas DataFrame that contains a column with date strings. How would you convert this column to a datetime format? Additionally, how would you extract the month and year from these datetime objects?
Question 13:
Explain the purpose of the 'pivot_table' method in Pandas and describe a business scenario where it might be useful.
Question 14:
How would you handle large datasets that don't fit into memory? Are you familiar with Dask or any similar libraries?
Python Interview Q&A: https://topmate.io/coding/898340
Like for more โค๏ธ
ENJOY LEARNING ๐๐
โค5
๐๐ถ๐๐ฐ๐ผ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐
Upgrade Your Tech Skills in 2025โFor FREE!
๐น Introduction to Cybersecurity
๐น Networking Essentials
๐น Introduction to Modern AI
๐น Discovering Entrepreneurship
๐น Python for Beginners
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4chn8Us
Enroll For FREE & Get Certified ๐
Upgrade Your Tech Skills in 2025โFor FREE!
๐น Introduction to Cybersecurity
๐น Networking Essentials
๐น Introduction to Modern AI
๐น Discovering Entrepreneurship
๐น Python for Beginners
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4chn8Us
Enroll For FREE & Get Certified ๐
โค1
Python Basics for Data Science
๐5