Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence
37.9K subscribers
284 photos
76 files
337 links
Free Datasets For Data Science Projects & Portfolio

Buy ads: https://telega.io/c/DataPortfolio

For Promotions/ads: @coderfun @love_data
Download Telegram
Python Programming Interview Questions for Entry Level Data Analyst

1. What is Python, and why is it popular in data analysis?

2. Differentiate between Python 2 and Python 3.

3. Explain the importance of libraries like NumPy and Pandas in data analysis.

4. How do you read and write data from/to files using Python?

5. Discuss the role of Matplotlib and Seaborn in data visualization with Python.

6. What are list comprehensions, and how do you use them in Python?

7. Explain the concept of object-oriented programming (OOP) in Python.


8. Discuss the significance of libraries like SciPy and Scikit-learn in data analysis.

9. How do you handle missing or NaN values in a DataFrame using Pandas?

10. Explain the difference between loc and iloc in Pandas DataFrame indexing.

11. Discuss the purpose and usage of lambda functions in Python.

12. What are Python decorators, and how do they work?

13. How do you handle categorical data in Python using the Pandas library?

14. Explain the concept of data normalization and its importance in data preprocessing.

15. Discuss the role of regular expressions (regex) in data cleaning with Python.

16. What are Python virtual environments, and why are they useful?

17. How do you handle outliers in a dataset using Python?

18. Explain the usage of the map and filter functions in Python.

19. Discuss the concept of recursion in Python programming.

20. How do you perform data analysis and visualization using Jupyter Notebooks?

Python Interview Q&A: https://topmate.io/coding/898340

Like for more โค๏ธ

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค5๐Ÿ‘2
๐—๐—ฃ ๐— ๐—ผ๐—ฟ๐—ด๐—ฎ๐—ป ๐—™๐—ฅ๐—˜๐—˜ ๐—ฉ๐—ถ๐—ฟ๐˜๐˜‚๐—ฎ๐—น ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ๐Ÿ˜

Want hands-on experience from a top global company without leaving your home?

These FREE virtual internship by JPMorgan on Forage let you explore careers in

โœ… Software Engineering
โœ… Investment Banking
โœ… Quantitative Research

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/4kStNZi

Enroll For FREE & Get Certified ๐ŸŽ“
Learn Data Science in 2024

๐Ÿญ. ๐—”๐—ฝ๐—ฝ๐—น๐˜† ๐—ฃ๐—ฎ๐—ฟ๐—ฒ๐˜๐—ผ'๐˜€ ๐—Ÿ๐—ฎ๐˜„ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—๐˜‚๐˜€๐˜ ๐—˜๐—ป๐—ผ๐˜‚๐—ด๐—ต ๐Ÿ“š

Pareto's Law states that "that 80% of consequences come from 20% of the causes".

This law should serve as a guiding framework for the volume of content you need to know to be proficient in data science.

Often rookies make the mistake of overspending their time learning algorithms that are rarely applied in production. Learning about advanced algorithms such as XLNet, Bayesian SVD++, and BiLSTMs, are cool to learn.

But, in reality, you will rarely apply such algorithms in production (unless your job demands research and application of state-of-the-art algos).

For most ML applications in production - especially in the MVP phase, simple algos like logistic regression, K-Means, random forest, and XGBoost provide the biggest bang for the buck because of their simplicity in training, interpretation and productionization.

So, invest more time learning topics that provide immediate value now, not a year later.

๐Ÿฎ. ๐—™๐—ถ๐—ป๐—ฑ ๐—ฎ ๐— ๐—ฒ๐—ป๐˜๐—ผ๐—ฟ โšก

Thereโ€™s a Japanese proverb that says โ€œBetter than a thousand days of diligent study is one day with a great teacher.โ€ This proverb directly applies to learning data science quickly.

Mentors can teach you about how to build a model in production and how to manage stakeholders - stuff that you donโ€™t often read about in courses and books.

So, find a mentor who can teach you practical knowledge in data science.

๐Ÿฏ. ๐——๐—ฒ๐—น๐—ถ๐—ฏ๐—ฒ๐—ฟ๐—ฎ๐˜๐—ฒ ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ โœ๏ธ

If you are serious about growing your excelling in data science, you have to put in the time to nurture your knowledge. This means that you need to spend less time watching mindless videos on TikTok and spend more time reading books and watching video lectures.

Join @datasciencefree for more

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘4
Forwarded from Artificial Intelligence
๐—ฆ๐˜๐—ฟ๐˜‚๐—ด๐—ด๐—น๐—ถ๐—ป๐—ด ๐˜„๐—ถ๐˜๐—ต ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—•๐—œ? ๐—ง๐—ต๐—ถ๐˜€ ๐—–๐—ต๐—ฒ๐—ฎ๐˜ ๐—ฆ๐—ต๐—ฒ๐—ฒ๐˜ ๐—ถ๐˜€ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—จ๐—น๐˜๐—ถ๐—บ๐—ฎ๐˜๐—ฒ ๐—ฆ๐—ต๐—ผ๐—ฟ๐˜๐—ฐ๐˜‚๐˜!๐Ÿ˜

Mastering Power BI can be overwhelming, but this cheat sheet by DataCamp makes it super easy! ๐Ÿš€

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4ld6F7Y

No more flipping through tabs & tutorialsโ€”just pin this cheat sheet and analyze data like a pro!โœ…๏ธ
๐Ÿ‘1
NumPy_SciPy_Pandas_Quandl_Cheat_Sheet.pdf
134.6 KB
Cheatsheet on Numpy and pandas for easy viewing ๐Ÿ‘€
ibm_machine_learning_for_dummies.pdf
1.8 MB
Short Machine Learning guide on industry applications and how itโ€™s used to resolve problems ๐Ÿ’ก
1663243982009.pdf
349.9 KB
All SQL solutions for leetcode, good luck grinding ๐Ÿซฃ
git-cheat-sheet-education.pdf
97.8 KB
Git commands cheatsheets for anyone working on personal projects on GitHub! ๐Ÿ‘พ
1655183344172.pdf
333.8 KB
Algorithmic concepts for anyone who is taking Data Structure and Algorithms, or interested in algorithmic trading ๐Ÿ˜‰
๐Ÿ‘5โค2
๐Ÿญ๐Ÿฌ๐Ÿฌ% ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

Master Python, Machine Learning, SQL, and Data Visualization with hands-on tutorials & real-world datasets? ๐ŸŽฏ

This 100% FREE resource from Kaggle will help you build job-ready skillsโ€”no fluff, no fees, just pure learning!

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3XYAnDy

Perfect for Beginners โœ…๏ธ
Here are five of the most commonly used SQL queries in data science:

1. SELECT and FROM Clauses
- Basic data retrieval: SELECT column1, column2 FROM table_name;

2. WHERE Clause
- Filtering data: SELECT * FROM table_name WHERE condition;

3. GROUP BY and Aggregate Functions
- Summarizing data: SELECT column1, COUNT(*), AVG(column2) FROM table_name GROUP BY column1;

4. JOIN Operations
- Combining data from multiple tables:

     SELECT a.column1, b.column2
FROM table1 a
JOIN table2 b ON a.common_column = b.common_column;

5. Subqueries and Nested Queries
- Advanced data retrieval:

     SELECT column1
FROM table_name
WHERE column2 IN (SELECT column2 FROM another_table WHERE condition);

Like for more โค๏ธ

Hope it helps :)
๐Ÿ‘2
๐—ง๐—ผ๐—ฝ ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€ ๐—ข๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—™๐—ฅ๐—˜๐—˜ ๐˜ƒ๐—ถ๐—ฟ๐˜๐˜‚๐—ฎ๐—น ๐—ฒ๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฝ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ๐˜€๐Ÿ˜

Want to work on real industry tasks, develop in-demand skills, and boost your resumeโ€”all for FREE? 

 Your dream career starts with real experienceโ€”grab this opportunity today!

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4bCyUIM

๐Ÿ’ก No experience requiredโ€”just learn, upskill & build your portfolio! ๐Ÿš€
Free Datasets to work on Power BI + SQL projects ๐Ÿ‘‡๐Ÿ‘‡

1. AdventureWorks Sample Database:
- Link: [AdventureWorks Sample Database](https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15)
- Description: A sample database provided by Microsoft, containing sales, products, customers, and other related data.

2. Online Retail Dataset:
- Link: [UCI Machine Learning Repository - Online Retail Dataset](https://archive.ics.uci.edu/ml/datasets/online+retail)
- Description: Transactional data from an online retail store, suitable for customer segmentation and sales analysis.

3. Supermarket Sales Dataset:
- Link: [Supermarket Sales Dataset](https://www.kaggle.com/aungpyaeap/supermarket-sales)
- Description: Sales data from a supermarket, useful for inventory management and sales performance analysis.

4. Yahoo Finance (Historical Stock Data):
- Link: [Yahoo Finance](https://finance.yahoo.com/)
- Description: Historical stock data for various companies, suitable for financial analysis and visualization.

5. Human Resources Analytics: Employee Attrition and Performance:
- Link: [Kaggle HR Analytics Dataset](https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset)
- Description: Employee data including demographics, performance, and attrition information, suitable for employee performance analysis.

Bonus Open Sources Resources: https://t.iss.one/DataPortfolio/16

These datasets are freely available for practicing Power BI and SQL skills. You can download them from the provided links and import them into your SQL database management system (e.g., MySQL, SQL Server, PostgreSQL) for hands-on โ˜บ๏ธ๐Ÿ’ช
๐Ÿ‘3