๐Here are 5 fresh Project ideas for Data Analysts ๐
๐ฏ ๐๐ถ๐ฟ๐ฏ๐ป๐ฏ ๐ข๐ฝ๐ฒ๐ป ๐๐ฎ๐๐ฎ ๐
https://www.kaggle.com/datasets/arianazmoudeh/airbnbopendata
๐กThis dataset describes the listing activity of homestays in New York City
๐ฏ ๐ง๐ผ๐ฝ ๐ฆ๐ฝ๐ผ๐๐ถ๐ณ๐ ๐๐ผ๐ป๐ด๐ ๐ณ๐ฟ๐ผ๐บ ๐ฎ๐ฌ๐ญ๐ฌ-๐ฎ๐ฌ๐ญ๐ต ๐ต
https://www.kaggle.com/datasets/leonardopena/top-spotify-songs-from-20102019-by-year
๐ฏ๐ช๐ฎ๐น๐บ๐ฎ๐ฟ๐ ๐ฆ๐๐ผ๐ฟ๐ฒ ๐ฆ๐ฎ๐น๐ฒ๐ ๐๐ผ๐ฟ๐ฒ๐ฐ๐ฎ๐๐๐ถ๐ป๐ด ๐
https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/data
๐กUse historical markdown data to predict store sales
๐ฏ ๐ก๐ฒ๐๐ณ๐น๐ถ๐ ๐ ๐ผ๐๐ถ๐ฒ๐ ๐ฎ๐ป๐ฑ ๐ง๐ฉ ๐ฆ๐ต๐ผ๐๐ ๐บ
https://www.kaggle.com/datasets/shivamb/netflix-shows
๐กListings of movies and tv shows on Netflix - Regularly Updated
๐ฏ๐๐ถ๐ป๐ธ๐ฒ๐ฑ๐๐ป ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐ท๐ผ๐ฏ๐ ๐น๐ถ๐๐๐ถ๐ป๐ด๐ ๐ผ
https://www.kaggle.com/datasets/cedricaubin/linkedin-data-analyst-jobs-listings
๐กMore than 8400 rows of data analyst jobs from USA, Canada and Africa.
Join for more -> https://t.iss.one/addlist/4q2PYC0pH_VjZDk5
ENJOY LEARNING ๐๐
๐ฏ ๐๐ถ๐ฟ๐ฏ๐ป๐ฏ ๐ข๐ฝ๐ฒ๐ป ๐๐ฎ๐๐ฎ ๐
https://www.kaggle.com/datasets/arianazmoudeh/airbnbopendata
๐กThis dataset describes the listing activity of homestays in New York City
๐ฏ ๐ง๐ผ๐ฝ ๐ฆ๐ฝ๐ผ๐๐ถ๐ณ๐ ๐๐ผ๐ป๐ด๐ ๐ณ๐ฟ๐ผ๐บ ๐ฎ๐ฌ๐ญ๐ฌ-๐ฎ๐ฌ๐ญ๐ต ๐ต
https://www.kaggle.com/datasets/leonardopena/top-spotify-songs-from-20102019-by-year
๐ฏ๐ช๐ฎ๐น๐บ๐ฎ๐ฟ๐ ๐ฆ๐๐ผ๐ฟ๐ฒ ๐ฆ๐ฎ๐น๐ฒ๐ ๐๐ผ๐ฟ๐ฒ๐ฐ๐ฎ๐๐๐ถ๐ป๐ด ๐
https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/data
๐กUse historical markdown data to predict store sales
๐ฏ ๐ก๐ฒ๐๐ณ๐น๐ถ๐ ๐ ๐ผ๐๐ถ๐ฒ๐ ๐ฎ๐ป๐ฑ ๐ง๐ฉ ๐ฆ๐ต๐ผ๐๐ ๐บ
https://www.kaggle.com/datasets/shivamb/netflix-shows
๐กListings of movies and tv shows on Netflix - Regularly Updated
๐ฏ๐๐ถ๐ป๐ธ๐ฒ๐ฑ๐๐ป ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐ท๐ผ๐ฏ๐ ๐น๐ถ๐๐๐ถ๐ป๐ด๐ ๐ผ
https://www.kaggle.com/datasets/cedricaubin/linkedin-data-analyst-jobs-listings
๐กMore than 8400 rows of data analyst jobs from USA, Canada and Africa.
Join for more -> https://t.iss.one/addlist/4q2PYC0pH_VjZDk5
ENJOY LEARNING ๐๐
๐5
Data Cleaning Techniques in Python โ
โค4๐1
Top Platforms for Building Data Science Portfolio
Build an irresistible portfolio that hooks recruiters with these free platforms.
Landing a job as a data scientist begins with building your portfolio with a comprehensive list of all your projects. To help you get started with building your portfolio, here is the list of top data science platforms. Remember the stronger your portfolio, the better chances you have of landing your dream job.
1. GitHub
2. Kaggle
3. LinkedIn
4. Medium
5. MachineHack
6. DagsHub
7. HuggingFace
7 Websites to Learn Data Science for FREE๐งโ๐ป
โ w3school
โ datasimplifier
โ hackerrank
โ kaggle
โ geeksforgeeks
โ leetcode
โ freecodecamp
Build an irresistible portfolio that hooks recruiters with these free platforms.
Landing a job as a data scientist begins with building your portfolio with a comprehensive list of all your projects. To help you get started with building your portfolio, here is the list of top data science platforms. Remember the stronger your portfolio, the better chances you have of landing your dream job.
1. GitHub
2. Kaggle
3. LinkedIn
4. Medium
5. MachineHack
6. DagsHub
7. HuggingFace
7 Websites to Learn Data Science for FREE๐งโ๐ป
โ w3school
โ datasimplifier
โ hackerrank
โ kaggle
โ geeksforgeeks
โ leetcode
โ freecodecamp
๐4
โThe Best Public Datasets for Machine Learning and Data Scienceโ by Stacy Stanford
https://datasimplifier.com/best-data-analyst-projects-for-freshers/
https://toolbox.google.com/datasetsearch
https://www.kaggle.com/datasets
https://mlr.cs.umass.edu/ml/
https://www.visualdata.io/
https://guides.library.cmu.edu/machine-learning/datasets
https://www.data.gov/
https://nces.ed.gov/
https://www.ukdataservice.ac.uk/
https://datausa.io/
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.kaggle.com/xiuchengwang/python-dataset-download
https://www.quandl.com/
https://data.worldbank.org/
https://www.imf.org/en/Data
https://markets.ft.com/data/
https://trends.google.com/trends/?q=google&ctab=0&geo=all&date=all&sort=0
https://www.aeaweb.org/resources/data/us-macro-regional
https://xviewdataset.org/#dataset
https://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php
https://image-net.org/
https://cocodataset.org/
https://visualgenome.org/
https://ai.googleblog.com/2016/09/introducing-open-images-dataset.html?m=1
https://vis-www.cs.umass.edu/lfw/
https://vision.stanford.edu/aditya86/ImageNetDogs/
https://web.mit.edu/torralba/www/indoor.html
https://www.cs.jhu.edu/~mdredze/datasets/sentiment/
https://ai.stanford.edu/~amaas/data/sentiment/
https://nlp.stanford.edu/sentiment/code.html
https://help.sentiment140.com/for-students/
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://hotpotqa.github.io/
https://www.cs.cmu.edu/~./enron/
https://snap.stanford.edu/data/web-Amazon.html
https://aws.amazon.com/datasets/google-books-ngrams/
https://u.cs.biu.ac.il/~koppel/BlogCorpus.htm
https://code.google.com/archive/p/wiki-links/downloads
https://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
https://www.yelp.com/dataset
https://t.iss.one/DataPortfolio/2
https://archive.ics.uci.edu/ml/datasets/Spambase
https://bdd-data.berkeley.edu/
https://apolloscape.auto/
https://archive.org/details/comma-dataset
https://www.cityscapes-dataset.com/
https://aplicaciones.cimat.mx/Personal/jbhayet/ccsad-dataset
https://www.vision.ee.ethz.ch/~timofter/traffic_signs/
https://cvrr.ucsd.edu/LISA/datasets.html
https://hci.iwr.uni-heidelberg.de/node/6132
https://www.lara.prd.fr/benchmarks/trafficlightsrecognition
https://computing.wpi.edu/dataset.html
https://mimic.physionet.org/
โ Best Telegram channels to get free coding & data science resources
https://t.iss.one/addlist/4q2PYC0pH_VjZDk5
โ Free Courses with Certificate:
https://t.iss.one/free4unow_backup
https://datasimplifier.com/best-data-analyst-projects-for-freshers/
https://toolbox.google.com/datasetsearch
https://www.kaggle.com/datasets
https://mlr.cs.umass.edu/ml/
https://www.visualdata.io/
https://guides.library.cmu.edu/machine-learning/datasets
https://www.data.gov/
https://nces.ed.gov/
https://www.ukdataservice.ac.uk/
https://datausa.io/
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.kaggle.com/xiuchengwang/python-dataset-download
https://www.quandl.com/
https://data.worldbank.org/
https://www.imf.org/en/Data
https://markets.ft.com/data/
https://trends.google.com/trends/?q=google&ctab=0&geo=all&date=all&sort=0
https://www.aeaweb.org/resources/data/us-macro-regional
https://xviewdataset.org/#dataset
https://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php
https://image-net.org/
https://cocodataset.org/
https://visualgenome.org/
https://ai.googleblog.com/2016/09/introducing-open-images-dataset.html?m=1
https://vis-www.cs.umass.edu/lfw/
https://vision.stanford.edu/aditya86/ImageNetDogs/
https://web.mit.edu/torralba/www/indoor.html
https://www.cs.jhu.edu/~mdredze/datasets/sentiment/
https://ai.stanford.edu/~amaas/data/sentiment/
https://nlp.stanford.edu/sentiment/code.html
https://help.sentiment140.com/for-students/
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://hotpotqa.github.io/
https://www.cs.cmu.edu/~./enron/
https://snap.stanford.edu/data/web-Amazon.html
https://aws.amazon.com/datasets/google-books-ngrams/
https://u.cs.biu.ac.il/~koppel/BlogCorpus.htm
https://code.google.com/archive/p/wiki-links/downloads
https://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
https://www.yelp.com/dataset
https://t.iss.one/DataPortfolio/2
https://archive.ics.uci.edu/ml/datasets/Spambase
https://bdd-data.berkeley.edu/
https://apolloscape.auto/
https://archive.org/details/comma-dataset
https://www.cityscapes-dataset.com/
https://aplicaciones.cimat.mx/Personal/jbhayet/ccsad-dataset
https://www.vision.ee.ethz.ch/~timofter/traffic_signs/
https://cvrr.ucsd.edu/LISA/datasets.html
https://hci.iwr.uni-heidelberg.de/node/6132
https://www.lara.prd.fr/benchmarks/trafficlightsrecognition
https://computing.wpi.edu/dataset.html
https://mimic.physionet.org/
โ Best Telegram channels to get free coding & data science resources
https://t.iss.one/addlist/4q2PYC0pH_VjZDk5
โ Free Courses with Certificate:
https://t.iss.one/free4unow_backup
๐3
Free Session to learn Data Analytics, Data Science & AI
๐๐
https://tracking.acciojob.com/g/PUfdDxgHR
Register fast, only for first few users
๐๐
https://tracking.acciojob.com/g/PUfdDxgHR
Register fast, only for first few users
๐2โค1
Creating a data science portfolio is a great way to showcase your skills and experience to potential employers. Here are some steps to help you create a strong data science portfolio:
1. Choose relevant projects: Select a few data science projects that demonstrate your skills and interests. These projects can be from your previous work experience, personal projects, or online competitions.
2. Clean and organize your code: Make sure your code is well-documented, organized, and easy to understand. Use comments to explain your thought process and the steps you took in your analysis.
3. Include a variety of projects: Try to include a mix of projects that showcase different aspects of data science, such as data cleaning, exploratory data analysis, machine learning, and data visualization.
4. Create visualizations: Data visualizations can help make your portfolio more engaging and easier to understand. Use tools like Matplotlib, Seaborn, or Tableau to create visually appealing charts and graphs.
5. Write project summaries: For each project, provide a brief summary of the problem you were trying to solve, the dataset you used, the methods you applied, and the results you obtained. Include any insights or recommendations that came out of your analysis.
6. Showcase your technical skills: Highlight the programming languages, libraries, and tools you used in each project. Mention any specific techniques or algorithms you implemented.
7. Link to your code and data: Provide links to your code repositories (e.g., GitHub) and any datasets you used in your projects. This allows potential employers to review your work in more detail.
8. Keep it updated: Regularly update your portfolio with new projects and skills as you gain more experience in data science. This will show that you are actively engaged in the field and continuously improving your skills.
By following these steps, you can create a comprehensive and visually appealing data science portfolio that will impress potential employers and help you stand out in the competitive job market.
1. Choose relevant projects: Select a few data science projects that demonstrate your skills and interests. These projects can be from your previous work experience, personal projects, or online competitions.
2. Clean and organize your code: Make sure your code is well-documented, organized, and easy to understand. Use comments to explain your thought process and the steps you took in your analysis.
3. Include a variety of projects: Try to include a mix of projects that showcase different aspects of data science, such as data cleaning, exploratory data analysis, machine learning, and data visualization.
4. Create visualizations: Data visualizations can help make your portfolio more engaging and easier to understand. Use tools like Matplotlib, Seaborn, or Tableau to create visually appealing charts and graphs.
5. Write project summaries: For each project, provide a brief summary of the problem you were trying to solve, the dataset you used, the methods you applied, and the results you obtained. Include any insights or recommendations that came out of your analysis.
6. Showcase your technical skills: Highlight the programming languages, libraries, and tools you used in each project. Mention any specific techniques or algorithms you implemented.
7. Link to your code and data: Provide links to your code repositories (e.g., GitHub) and any datasets you used in your projects. This allows potential employers to review your work in more detail.
8. Keep it updated: Regularly update your portfolio with new projects and skills as you gain more experience in data science. This will show that you are actively engaged in the field and continuously improving your skills.
By following these steps, you can create a comprehensive and visually appealing data science portfolio that will impress potential employers and help you stand out in the competitive job market.
โค2
Hey Guys๐,
The Average Salary Of a Data Scientist is 14LPA
๐๐๐๐จ๐ฆ๐ ๐ ๐๐๐ซ๐ญ๐ข๐๐ข๐๐ ๐๐๐ญ๐ ๐๐๐ข๐๐ง๐ญ๐ข๐ฌ๐ญ ๐๐ง ๐๐จ๐ฉ ๐๐๐๐ฌ๐
We help you master the required skills.
Learn by doing, build Industry level projects
๐ฉโ๐ 1500+ Students Placed
๐ผ 7.2 LPA Avg. Package
๐ฐ 41 LPA Highest Package
๐ค 450+ Hiring Partners
Apply for FREE๐ :
https://tracking.acciojob.com/g/PUfdDxgHR
( Limited Slots )
The Average Salary Of a Data Scientist is 14LPA
๐๐๐๐จ๐ฆ๐ ๐ ๐๐๐ซ๐ญ๐ข๐๐ข๐๐ ๐๐๐ญ๐ ๐๐๐ข๐๐ง๐ญ๐ข๐ฌ๐ญ ๐๐ง ๐๐จ๐ฉ ๐๐๐๐ฌ๐
We help you master the required skills.
Learn by doing, build Industry level projects
๐ฉโ๐ 1500+ Students Placed
๐ผ 7.2 LPA Avg. Package
๐ฐ 41 LPA Highest Package
๐ค 450+ Hiring Partners
Apply for FREE๐ :
https://tracking.acciojob.com/g/PUfdDxgHR
( Limited Slots )
๐2
๐ Free useful resources to learn Machine Learning
๐ Google
https://developers.google.com/machine-learning/crash-course
๐ Leetcode
https://leetcode.com/explore/featured/card/machine-learning-101
๐ Hackerrank
https://www.hackerrank.com/domains/ai/machine-learning
๐ Hands-on Machine Learning
https://t.iss.one/datasciencefun/424
๐ FreeCodeCamp
https://www.freecodecamp.org/learn/machine-learning-with-python/
๐ Machine learning projects
https://t.iss.one/datasciencefun/392
๐ Kaggle
https://www.kaggle.com/learn/intro-to-machine-learning
https://www.kaggle.com/learn/intermediate-machine-learning
๐ Geeksforgeeks
https://www.geeksforgeeks.org/machine-learning/
๐ Create ML Models
https://docs.microsoft.com/en-us/learn/paths/create-machine-learn-models/
๐ Machine Learning Test Cheat Sheet
https://www.cheatography.com/lulu-0012/cheat-sheets/test-ml/pdf/
Join @free4unow_backup for more free resources
ENJOY LEARNING ๐๐
๐ Google
https://developers.google.com/machine-learning/crash-course
๐ Leetcode
https://leetcode.com/explore/featured/card/machine-learning-101
๐ Hackerrank
https://www.hackerrank.com/domains/ai/machine-learning
๐ Hands-on Machine Learning
https://t.iss.one/datasciencefun/424
๐ FreeCodeCamp
https://www.freecodecamp.org/learn/machine-learning-with-python/
๐ Machine learning projects
https://t.iss.one/datasciencefun/392
๐ Kaggle
https://www.kaggle.com/learn/intro-to-machine-learning
https://www.kaggle.com/learn/intermediate-machine-learning
๐ Geeksforgeeks
https://www.geeksforgeeks.org/machine-learning/
๐ Create ML Models
https://docs.microsoft.com/en-us/learn/paths/create-machine-learn-models/
๐ Machine Learning Test Cheat Sheet
https://www.cheatography.com/lulu-0012/cheat-sheets/test-ml/pdf/
Join @free4unow_backup for more free resources
ENJOY LEARNING ๐๐
Google for Developers
Machine Learning | Google for Developers
๐7