Data Analytics
28.2K subscribers
1.21K photos
29 videos
34 files
1.03K links
Dive into the world of Data Analytics โ€“ uncover insights, explore trends, and master data-driven decision making.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
๐Ÿ’› Top 10 Best Websites to Learn Machine Learning โญ๏ธ
by [@codeprogrammer]

---

๐Ÿง  Googleโ€™s ML Course
๐Ÿ”— https://developers.google.com/machine-learning/crash-course

๐Ÿ“ˆ Kaggle Courses
๐Ÿ”— https://kaggle.com/learn

๐Ÿง‘โ€๐ŸŽ“ Coursera โ€“ Andrew Ngโ€™s ML Course
๐Ÿ”— https://coursera.org/learn/machine-learning

โšก๏ธ Fast.ai
๐Ÿ”— https://fast.ai

๐Ÿ”ง Scikit-Learn Documentation
๐Ÿ”— https://scikit-learn.org

๐Ÿ“น TensorFlow Tutorials
๐Ÿ”— https://tensorflow.org/tutorials

๐Ÿ”ฅ PyTorch Tutorials
๐Ÿ”— https://docs.pytorch.org/tutorials/

๐Ÿ›๏ธ MIT OpenCourseWare โ€“ Machine Learning
๐Ÿ”— https://ocw.mit.edu/courses/6-867-machine-learning-fall-2006/

โœ๏ธ Towards Data Science (Blog)
๐Ÿ”— https://towardsdatascience.com

---

๐Ÿ’ก Which one are you starting with? Drop a comment below! ๐Ÿ‘‡
#MachineLearning #LearnML #DataScience #AI

https://t.iss.one/CodeProgrammer ๐ŸŒŸ
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3
Basic Machine Learning Algorithms

1. Linear Regression (linear regression)
Predicts a number based on a linear relationship (example: apartment price).

2. Logistic Regression (logistic regression)
Classification, usually 0/1 (spam/not spam), outputs a probability.

3. Decision Tree (decision tree)
"If-then" rules, easy to explain but prone to overfitting.

4. SVM (support vector machine)
Seeks the boundary between classes with the maximum margin; works well on medium-sized data.

5. KNN (k-nearest neighbors)
Looks at the nearest points and votes; simple but slows down on large datasets.

6. Dimensionality Reduction (dimensionality reduction, often PCA/UMAP/t-SNE)
Compresses features to simplify data/visualization/remove noise.

7. Random Forest (random forest)
Many trees + averaging/voting; often a strong out-of-the-box solution.

8. K-means
Unsupervised clustering: divides points into k groups.

9. Naive Bayes (naive Bayes)
A fast probabilistic classifier, often good for text.

๐Ÿ‘‰ @DataAnalyticsX
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3
โ—๏ธLISA HELPS EVERYONE EARN MONEY!$29,000 HE'S GIVING AWAY TODAY!

Everyone can join his channel and make money! He gives away from $200 to $5.000 every day in his channel

https://t.iss.one/+HDFF3Mo_t68zNWQy

โšก๏ธFREE ONLY FOR THE FIRST 500 SUBSCRIBERS! FURTHER ENTRY IS PAID! ๐Ÿ‘†๐Ÿ‘‡

https://t.iss.one/+HDFF3Mo_t68zNWQy
Channel photo updated
๐—ฆ๐—ค๐—Ÿ ๐—™๐—ฟ๐—ผ๐—บ ๐—•๐—ฎ๐˜€๐—ถ๐—ฐ๐˜€ ๐˜๐—ผ ๐—”๐—ฑ๐˜ƒ๐—ฎ๐—ป๐—ฐ๐—ฒ๐—ฑ: This PDF-file contains SQL from beginner to advanced level.

You will need this 101-page PDF file to prepare and review SQL before any data-related interview.

https://drive.google.com/file/d/1N2uPi4hkdCLYPgBa5UfjFT4koqMbGUHz/view

๐Ÿ‘‰ @DataAnalyticsX
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4
This channels is for Programmers, Coders, Software Engineers.

0๏ธโƒฃ Python
1๏ธโƒฃ Data Science
2๏ธโƒฃ Machine Learning
3๏ธโƒฃ Data Visualization
4๏ธโƒฃ Artificial Intelligence
5๏ธโƒฃ Data Analysis
6๏ธโƒฃ Statistics
7๏ธโƒฃ Deep Learning
8๏ธโƒฃ programming Languages

โœ… https://t.iss.one/addlist/8_rRW2scgfRhOTc0

โœ… https://t.iss.one/Codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2
Here: GitHub repository to learn AI Engineering.

It contains some of the best free courses, articles, tutorials, and videos on the following topics:

Mathematical foundation
Basics of AI and #ML
Deep Learning and specializations
Generative #AI
Large language models (#LLM)
Guides on #promptengineering
#RAG, #agents, and #MCP

See here: https://github.com/ashishps1/learn-ai-engineering

๐Ÿ‘‰ @CODEPROGRAMMER
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4
๐ŸŽฏ Want to Upskill in IT? Try Our FREE 2026 Learning Kits!

SPOTO gives you free, instant access to high-quality, updated resources that help you study smarter and pass exams faster.
โœ… Latest Exam Materials:
Covering #Python, #Cisco, #PMI, #Fortinet, #AWS, #Azure, #AI, #Excel, #comptia, #ITIL, #cloud & more!
โœ… 100% Free, No Sign-up:
All materials are instantly downloadable

โœ… Whatโ€™s Inside:
ใƒป๐Ÿ“˜IT Certs E-book: https://bit.ly/3Mlu5ez
ใƒป๐Ÿ“IT Exams Skill Test: https://bit.ly/3NVrgRU
ใƒป๐ŸŽ“Free IT courses: https://bit.ly/3M9h5su
ใƒป๐Ÿค–Free PMP Study Guide: https://bit.ly/4te3EIn
ใƒปโ˜๏ธFree Cloud Study Guide: https://bit.ly/4kgFVDs

๐Ÿ‘‰ Become Part of Our IT Learning Circle! resources and support:
https://chat.whatsapp.com/FlG2rOYVySLEHLKXF3nKGB

๐Ÿ’ฌ Want exam help? Chat with an admin now!
wa.link/8fy3x4
โค2
Numpy_Cheat_Sheet.pdf
4.8 MB
NumPy Cheat Sheet: Data Analysis in Python

This #Python cheat sheet is a quick reference for #NumPy beginners.

Learn more:
https://www.datacamp.com/cheat-sheet/numpy-cheat-sheet-data-analysis-in-python

https://t.iss.one/DataAnalyticsX
โค9
Forwarded from Learn Python Hub
This channels is for Programmers, Coders, Software Engineers.

0๏ธโƒฃ Python
1๏ธโƒฃ Data Science
2๏ธโƒฃ Machine Learning
3๏ธโƒฃ Data Visualization
4๏ธโƒฃ Artificial Intelligence
5๏ธโƒฃ Data Analysis
6๏ธโƒฃ Statistics
7๏ธโƒฃ Deep Learning
8๏ธโƒฃ programming Languages

โœ… https://t.iss.one/addlist/8_rRW2scgfRhOTc0

โœ… https://t.iss.one/Codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค1
๐Ÿค– Automating Research with NotebookLM

Notebooklm-py is an unofficial library for working with Google NotebookLM, allowing you to automate research processes, generate content, and integrate AI agents. It's suitable for prototypes and personal projects, using Python or the command line.

๐Ÿš€ Key features:
- Integration with AI agents and Claude Code
- Automating research with source importing
- Generating podcasts, videos, and educational materials
- Support for working via the Python API and CLI
- Use with unofficial Google APIs

๐Ÿ“Œ GitHub: https://github.com/teng-lin/notebooklm-py

https://t.iss.one/DataAnalyticsX
โค3
Forwarded from Machine Learning
๐Ÿš€ Machine Learning Workflow: Step-by-Step Breakdown
Understanding the ML pipeline is essential to build scalable, production-grade models.

๐Ÿ‘‰ Initial Dataset
Start with raw data. Apply cleaning, curation, and drop irrelevant or redundant features.
Example: Drop constant features or remove columns with 90% missing values.

๐Ÿ‘‰ Exploratory Data Analysis (EDA)
Use mean, median, standard deviation, correlation, and missing value checks.
Techniques like PCA and LDA help with dimensionality reduction.
Example: Use PCA to reduce 50 features down to 10 while retaining 95% variance.

๐Ÿ‘‰ Input Variables
Structured table with features like ID, Age, Income, Loan Status, etc.
Ensure numeric encoding and feature engineering are complete before training.

๐Ÿ‘‰ Processed Dataset
Split the data into training (70%) and testing (30%) sets.
Example: Stratified sampling ensures target distribution consistency.

๐Ÿ‘‰ Learning Algorithms
Apply algorithms like SVM, Logistic Regression, KNN, Decision Trees, or Ensemble models like Random Forest and Gradient Boosting.
Example: Use Random Forest to capture non-linear interactions in tabular data.

๐Ÿ‘‰ Hyperparameter Optimization
Tune parameters using Grid Search or Random Search for better performance.
Example: Optimize max_depth and n_estimators in Gradient Boosting.

๐Ÿ‘‰ Feature Selection
Use model-based importance ranking (e.g., from Random Forest) to remove noisy or irrelevant features.
Example: Drop features with zero importance to reduce overfitting.

๐Ÿ‘‰ Model Training and Validation
Use cross-validation to evaluate generalization. Train final model on full training set.
Example: 5-fold cross-validation for reliable performance metrics.

๐Ÿ‘‰ Model Evaluation
Use task-specific metrics:
- Classification โ€“ MCC, Sensitivity, Specificity, Accuracy
- Regression โ€“ RMSE, Rยฒ, MSE
Example: For imbalanced classes, prefer MCC over simple accuracy.

๐Ÿ’ก This workflow ensures models are robust, interpretable, and ready for deployment in real-world applications.

https://t.iss.one/DataScienceM
โค4
Forwarded from Machine Learning
Effective Pandas 2: Opinionated Patterns for Data Manipulation

This book is now available at a discounted price through our Patreon grant:

Original Price: $53

Discounted Price: $12

Limited to 15 copies

Buy: https://www.patreon.com/posts/effective-pandas-150394542
โค1
๐Ÿฑ 5 of the Best GitHub Repos
๐Ÿ”ƒ for Data Scientists

๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ป When I was just starting out and trying to get into the "data" field, I had no one to guide me, nor did I know what exactly I should study. To be honest, I was confused for months and felt lost.

โ–ถ๏ธ But doing projects was like water on fire and helped me a lot to build my skills.

ใ€ฐ Repo Awesome Data Analysis

๐Ÿท A complete treasure trove of everything you need to start: SQL, Python, AI, data analysis, and more... In short, if you want to start from zero and strengthen your foundation, start here first.

                  
โž– โž– โž–

ใ€ฐ Repo Data Scientist Handbook

๐Ÿท A concise handbook that tells you what you need to learn and what you can ignore for now.

                  
โž– โž– โž–

ใ€ฐ Repo Cookiecutter Data Science

๐Ÿท A standard project template used by professionals. With this template, you can structure your data analysis and AI projects like a pro.

                  
โž– โž– โž–

ใ€ฐ Repo Data Science Cookie Cutter

๐Ÿท This is also a very clean project template that teaches you how to build a data project that wonโ€™t fall apart tomorrow and can be easily updated. Meaning your projects will be useful in the real world from the start.

                  
โž– โž– โž–

ใ€ฐ Repo ML From Scratch

๐Ÿท Here, the main AI algorithms are implemented from scratch in simple language. Itโ€™s great for understanding how models really work and for explaining them well in your interviews.

๐ŸŒ #Data_Science #DataScience
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3๐Ÿ‘1
These 9 lectures from Stanford are a pure goldmine for anyone wanting to learn and understand LLMs in depth

Lecture 1 - Transformer: https://lnkd.in/dGnQW39t

Lecture 2 - Transformer-Based Models & Tricks: https://lnkd.in/dT_VEpVH

Lecture 3 - Tranformers & Large Language Models: https://lnkd.in/dwjjpjaP

Lecture 4 - LLM Training: https://lnkd.in/dSi_xCEN

Lecture 5 - LLM tuning: https://lnkd.in/dUK5djpB

Lecture 6 - LLM Reasoning: https://lnkd.in/dAGQTNAM

Lecture 7 - Agentic LLMs: https://lnkd.in/dWD4j7vm

Lecture 8 - LLM Evaluation: https://lnkd.in/ddxE5zvb

Lecture 9 - Recap & Current Trends: https://lnkd.in/dGsTd8jN

Start understanding #LLMs in depth from the experts. Go through each step-by-step video.

https://t.iss.one/DataAnalyticsX ๐Ÿ”—
Please open Telegram to view this post
VIEW IN TELEGRAM
โค5
The biggest surprise for our valued audience: we are offering 40 paid courses completely free.

Enroll Here and request
https://adsly.me/l/jwxfnss0yi

We use a spam/flood protection system to ensure that all registered users are real people.
โค6๐Ÿ‘Ž1