Data Analytics
27.9K subscribers
1.19K photos
27 videos
33 files
1.01K links
Dive into the world of Data Analytics – uncover insights, explore trends, and master data-driven decision making.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
1. What is the output of this code?

import pandas as pd
s = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
print(s.reindex(['c', 'a', 'd']))


A. Series with values [3, 1, NaN]
B. Series with values [3, 1]
C. KeyError
D. Series with values [1, 3, NaN]

Correct answer: A.

2. What does this code produce?

import pandas as pd
df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
print(df.assign(c=lambda x: x['a'] + x['b'])['c'].iloc[1])


A. 3
B. 4
C. 5
D. 6

Correct answer: C.

3. What is the result?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
df.loc[df['a'] > 1, 'a'] = 0
print(df['a'].tolist())


A. [1, 2, 3]
B. [1, 0, 0]
C. [0, 0, 0]
D. [1, 2, 0]

Correct answer: B.

4. What does this output?

import pandas as pd
s = pd.Series([10, 20, 30], index=[2, 0, 1])
print(s.sort_index().iloc[0])


A. 10
B. 20
C. 30
D. IndexError

Correct answer: B.

5. What is returned?

import pandas as pd
df = pd.DataFrame({'a': [1, 1, 2]})
print(df['a'].value_counts().loc[1])


A. 1
B. 2
C. 3
D. KeyError

Correct answer: B.

6. What does this code output?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s.map({1: 'a', 2: 'b'}).isna().sum())


A. 0
B. 1
C. 2
D. 3

Correct answer: B.

7. What is the result?

import pandas as pd
df = pd.DataFrame({'a': [1, None, 3]})
print(df['a'].astype('Int64').isna().sum())


A. 0
B. 1
C. 2
D. Raises error

Correct answer: B.

8. What does this produce?

import pandas as pd
df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
print(df.filter(regex='a').shape)


A. (1, 2)
B. (2, 1)
C. (2, 2)
D. (1, 1)

Correct answer: B.

9. What is printed?

import pandas as pd
s = pd.Series(['1', '2', '3'])
print(s.str.cat(sep='-'))


A. 1-2-3
B. ['1-2-3']
C. Series
D. Error

Correct answer: A.

10. What does this code return?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.sample(n=1).shape)


A. (3, 1)
B. (1, 3)
C. (1, 1)
D. Depends on random seed

Correct answer: C.

11. What is the result?

import pandas as pd
s = pd.Series([1, 2, 3, 4])
print(s.rolling(2).sum().iloc[-1])


A. 4
B. 5
C. 6
D. NaN

Correct answer: B.

12. What does this output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.eval('b = a * 2').shape)


A. (3, 1)
B. (3, 2)
C. (1, 3)
D. Error

Correct answer: B.

13. What is returned?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.query('a % 2 == 0')['a'].iloc[0])


A. 1
B. 2
C. 3
D. KeyError

Correct answer: B.

14. What does this code output?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s.to_frame().shape)


A. (1, 3)
B. (3, 1)
C. (3, 3)
D. (1, 1)

Correct answer: B.

15. What is the result?

import pandas as pd
df = pd.DataFrame({'a': [1, 2]})
print(df.T.shape)


A. (2, 1)
B. (1, 2)
C. (2, 2)
D. (1, 1)

Correct answer: B.

16. What does this print?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.shift(1)['a'].isna().sum())


A. 0
B. 1
C. 2
D. 3

Correct answer: B.

17. What is the output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.duplicated().any())


A. True
B. False
C. None
D. Error

Correct answer: B.

18. What does this code return?

import pandas as pd
s = pd.Series([3, 1, 2])
print(s.rank().tolist())


A. [3, 1, 2]
B. [1, 2, 3]
C. [3.0, 1.0, 2.0]
D. [3.0, 1.0, 2.0] sorted

Correct answer: C.

19. What is printed?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.memory_usage(deep=True).iloc[1] > 0)


A. True
B. False
C. None
D. Error

Correct answer: A.

20. What does this produce?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.select_dtypes(include='int').shape)


A. (3, 0)
B. (0, 1)
C. (3, 1)
D. (1, 3)

Correct answer: C.
6
1. What is the output of this code?

import pandas as pd
idx = pd.Index(['a', 'b', 'c'])
print(idx.is_unique)


A. False
B. True
C. Raises AttributeError
D. None

Correct answer: B.

2. What does this code return?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.set_index('a').index.name)


A. None
B. 'index'
C. 'a'
D. Raises KeyError

Correct answer: C.

3. What is the result?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s.add(1).tolist())


A. [1, 2, 3]
B. [2, 3, 4]
C. [1, 3, 5]
D. Error

Correct answer: B.

4. What does this code output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.nlargest(2, 'a')['a'].tolist())


A. [1, 2]
B. [2, 3]
C. [3, 2]
D. [3, 1]

Correct answer: C.

5. What is printed?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.nsmallest(1, 'a').iloc[0, 0])


A. 1
B. 2
C. 3
D. Error

Correct answer: A.

6. What does this code return?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s.diff().isna().sum())


A. 0
B. 1
C. 2
D. 3

Correct answer: B.

7. What is the output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.cumsum()['a'].iloc[-1])


A. 3
B. 5
C. 6
D. Error

Correct answer: C.

8. What does this code produce?

import pandas as pd
df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
print(df.pipe(lambda x: x.shape))


A. (1, 4)
B. (2, 2)
C. (4, 1)
D. Error

Correct answer: B.

9. What is returned?

import pandas as pd
s = pd.Series([10, 20, 30])
print(s.take([2, 0]).tolist())


A. [10, 20]
B. [30, 10]
C. [20, 30]
D. Error

Correct answer: B.

10. What does this output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.any().iloc[0])


A. False
B. True
C. None
D. Error

Correct answer: B.

11. What is the result?

import pandas as pd
df = pd.DataFrame({'a': [0, 0, 1]})
print(df.all().iloc[0])


A. True
B. False
C. None
D. Error

Correct answer: B.

12. What does this code return?

import pandas as pd
s = pd.Series(['a', 'b', 'c'])
print(s.repeat(2).shape)


A. (3,)
B. (6,)
C. (2, 3)
D. Error

Correct answer: B.

13. What is printed?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.melt().shape)


A. (1, 3)
B. (3, 2)
C. (3, 1)
D. (1, 2)

Correct answer: B.

14. What does this code output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.stack().shape)


A. (3,)
B. (3, 1)
C. (1, 3)
D. Error

Correct answer: A.

15. What is the result?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.unstack().isna().sum().sum())


A. 0
B. 1
C. 2
D. Error

Correct answer: A.

16. What does this code return?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s.to_numpy().ndim)


A. 0
B. 1
C. 2
D. Error

Correct answer: B.

17. What is printed?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.axes[0].equals(df.index))


A. True
B. False
C. None
D. Error

Correct answer: A.

18. What does this code output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.copy(deep=False) is df)


A. True
B. False
C. None
D. Error

Correct answer: B.

19. What is the result?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s.equals(pd.Series([1, 2, 3])))


A. True
B. False
C. None
D. Error

Correct answer: A.

20. What does this code output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.info() is None)


A. True
B. False
C. None
D. Error

Correct answer: A.

https://t.iss.one/DataAnalyticsX
Please open Telegram to view this post
VIEW IN TELEGRAM
8
Please open Telegram to view this post
VIEW IN TELEGRAM
5
This GitHub repository is not a dump of tutorials.

Inside, there are 28 production-ready AI projects that can be used.

What's there:

Machine learning projects
→ Airbnb price forecasting
→ Air ticket cost calculator
→ Student performance tracker

AI for medicine
→ Chest disease detection
→ Heart disease prediction
→ Diabetes risk analysis

Generative AI applications
→ Live chatbot on Gemini
→ Medical assistant tool
→ Document analysis tool

Computer vision projects
→ Hand tracking system
→ Drug recognition app
→ OpenCV implementations

Data analysis dashboards
→ E-commerce analytics
→ Restaurant analytics
→ Cricket statistics tracker

And 10 more advanced projects coming soon:
→ Deepfake detection
→ Brain tumor classification
→ Driver drowsiness alert system

This is not just a collection of code files.
These are end-to-end working applications.

View the repository 😲
https://github.com/KalyanM45/AI-Project-Gallery

👉 @codeprogrammer

Like and Share
Please open Telegram to view this post
VIEW IN TELEGRAM
8
Media is too big
VIEW IN TELEGRAM
OnSpace Mobile App builder: Build AI Apps in minutes

Visit website: https://www.onspace.ai/?via=tg_datas
Or Download app:https://onspace.onelink.me/za8S/h1jb6sb9?c=datas

With OnSpace, you can build website or AI Mobile Apps by chatting with AI, and publish to PlayStore or AppStore.

What will you get:
✔️ Create app or website by chatting with AI;
✔️ Integrate with Any top AI power just by giving order (like Sora2, Nanobanan Pro & Gemini 3 Pro);
✔️ Download APK,AAB file, publish to AppStore.
✔️ Add payments and monetize like in-app-purchase and Stripe.
✔️ Functional login & signup.
✔️ Database + dashboard in minutes.
✔️ Full tutorial on YouTube and within 1 day customer service
Please open Telegram to view this post
VIEW IN TELEGRAM
4
Data Analytics
OnSpace Mobile App builder: Build AI Apps in minutes Visit website: https://www.onspace.ai/?via=tg_datas Or Download app:https://onspace.onelink.me/za8S/h1jb6sb9?c=datas With OnSpace, you can build website or AI Mobile Apps by chatting with AI, and publish…
A great app for building and programming desktop, Android, and Telegram bots using only prompts

Just send what you want and it will design everything for you and the possibility to make money from your app 👍
1
And what if simply changing the library would unlock all the processor cores without rewriting the code?

pandas runs joins on a single core, leaving the others idle when working with large tables.

Polars distributes join operations across all available cores and, as a result, is significantly faster than pandas on large data sets.

Why is Polars so fast:
• Processes rows in batches in parallel
• Uses all CPU cores
• Does not require any configuration

Article - pandas vs polars vs DuckDB
Run this code

👉 https://t.iss.one/DataAnalyticsX
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21
Media is too big
VIEW IN TELEGRAM
🛑 Popular #SQL interview question.

How would you answer it?

https://t.iss.one/DataAnalyticsX
2
👩‍💻 FREE 2026 IT Learning Kits Giveaway

🔥Whether you're preparing for #Cisco #AWS #PMP #Python #Excel #Google #Microsoft #AI or any other in-demand certification – SPOTO has got you covered!

🎁 Explore Our FREE Study Resources
·IT Certs E-book : https://bit.ly/3YvSMHL
·IT exams skill Test : https://bit.ly/4r4VHnd
·Python, ITIL, PMP, Excel, Cyber Security, cloud, SQL Courses : https://bit.ly/4qNWl8r
·Free AI online preparation material and support tools : https://bit.ly/4qKiKTN

🔗 Need IT Certs Exam Help? contact: wa.link/dm4kyz
📲 Join IT Study Group for insider tips & expert support:
https://chat.whatsapp.com/BEQ9WrfLnpg1SgzGQw69oM
4
⚡️ All cheat sheets for programmers in one place.

There's a lot of useful stuff inside: short, clear tips on languages, technologies, and frameworks.

No registration required and it's free.

https://overapi.com/

#python #php #Database #DataAnalysis #MachineLearning #AI #DeepLearning #LLMS

https://t.iss.one/CodeProgrammer ⚡️
Please open Telegram to view this post
VIEW IN TELEGRAM
4