Here are some advanced SQL techniques that are game-changers
Window Functions: Learn how to use OVER() for advanced analytics tasks. They are crucial for calculating running totals, rankings, and lead-lag analysis in datasets.
CTEs and Temp Tables: Common Table Expressions (CTEs) and temporary tables can simplify complex queries, especially when dealing with large datasets.
Dynamic SQL: Understand how to construct SQL queries dynamically to increase the flexibility of your database interactions.
Optimizing Queries for Performance: Explore how indexing, query restructuring, and understanding execution plans can drastically improve your query performance.
Using PIVOT and UNPIVOT: These operations are key for converting rows to columns and vice versa, making data more readable and analysis-friendly. If you're looking to deepen your SQL knowledge, these areas are a great start.
Window Functions: Learn how to use OVER() for advanced analytics tasks. They are crucial for calculating running totals, rankings, and lead-lag analysis in datasets.
CTEs and Temp Tables: Common Table Expressions (CTEs) and temporary tables can simplify complex queries, especially when dealing with large datasets.
Dynamic SQL: Understand how to construct SQL queries dynamically to increase the flexibility of your database interactions.
Optimizing Queries for Performance: Explore how indexing, query restructuring, and understanding execution plans can drastically improve your query performance.
Using PIVOT and UNPIVOT: These operations are key for converting rows to columns and vice versa, making data more readable and analysis-friendly. If you're looking to deepen your SQL knowledge, these areas are a great start.
๐2
Q1: How would you analyze data to understand user connection patterns on a professional network?
Ans: I'd use graph databases like Neo4j for social network analysis. By analyzing connection patterns, I can identify influencers or isolated communities.
Q2: Describe a challenging data visualization you created to represent user engagement metrics.
Ans: I visualized multi-dimensional data showing user engagement across features, regions, and time using tools like D3.js, creating an interactive dashboard with drill-down capabilities.
Q3: How would you identify and target passive job seekers on LinkedIn?
Ans: I'd analyze user behavior patterns, like increased profile updates, frequent visits to job postings, or engagement with career-related content, to identify potential passive job seekers.
Q4: How do you measure the effectiveness of a new feature launched on LinkedIn?
Ans: I'd set up A/B tests, comparing user engagement metrics between those who have access to the new feature and a control group. I'd then analyze metrics like time spent, feature usage frequency, and overall platform engagement to measure effectiveness.
Ans: I'd use graph databases like Neo4j for social network analysis. By analyzing connection patterns, I can identify influencers or isolated communities.
Q2: Describe a challenging data visualization you created to represent user engagement metrics.
Ans: I visualized multi-dimensional data showing user engagement across features, regions, and time using tools like D3.js, creating an interactive dashboard with drill-down capabilities.
Q3: How would you identify and target passive job seekers on LinkedIn?
Ans: I'd analyze user behavior patterns, like increased profile updates, frequent visits to job postings, or engagement with career-related content, to identify potential passive job seekers.
Q4: How do you measure the effectiveness of a new feature launched on LinkedIn?
Ans: I'd set up A/B tests, comparing user engagement metrics between those who have access to the new feature and a control group. I'd then analyze metrics like time spent, feature usage frequency, and overall platform engagement to measure effectiveness.
๐3
Top 8 Excel interview questions data analysts ๐๐
1. Advanced Formulas:
- Can you explain the difference between VLOOKUP and INDEX-MATCH functions? When would you prefer one over the other?
- How would you use the SUMIFS function to analyze data with multiple criteria?
2. Data Cleaning and Manipulation:
- Describe a scenario where you had to clean and transform messy data in Excel. What techniques did you use?
- How do you remove duplicates from a dataset, and what considerations should be taken into account?
3. Pivot Tables:
- Explain the purpose of a pivot table. Provide an example of when you used a pivot table to derive meaningful insights.
- What are slicers in a pivot table, and how can they be beneficial in data analysis?
4. Data Visualization:
- Share your approach to creating effective charts and graphs in Excel to communicate data trends.
- How would you use conditional formatting to highlight key information in a dataset?
5. Statistical Analysis:
- Discuss a situation where you applied statistical analysis in Excel to draw conclusions from a dataset.
- Explain the steps you would take to perform regression analysis in Excel.
6. Macros and Automation:
- Have you ever used Excel macros to automate a repetitive task? If so, provide an example.
- What are the potential risks and benefits of using macros in a data analysis workflow?
7. Data Validation:
- How do you implement data validation in Excel, and why is it important in data analysis?
- Can you give an example of when you used Excel's data validation to improve data accuracy?
8. Data Linking and External Data Sources:
- Describe a situation where you had to link data from multiple Excel workbooks. How did you approach this task?
- How would you import data from an external database into Excel for analysis?
ENJOY LEARNING ๐๐
1. Advanced Formulas:
- Can you explain the difference between VLOOKUP and INDEX-MATCH functions? When would you prefer one over the other?
- How would you use the SUMIFS function to analyze data with multiple criteria?
2. Data Cleaning and Manipulation:
- Describe a scenario where you had to clean and transform messy data in Excel. What techniques did you use?
- How do you remove duplicates from a dataset, and what considerations should be taken into account?
3. Pivot Tables:
- Explain the purpose of a pivot table. Provide an example of when you used a pivot table to derive meaningful insights.
- What are slicers in a pivot table, and how can they be beneficial in data analysis?
4. Data Visualization:
- Share your approach to creating effective charts and graphs in Excel to communicate data trends.
- How would you use conditional formatting to highlight key information in a dataset?
5. Statistical Analysis:
- Discuss a situation where you applied statistical analysis in Excel to draw conclusions from a dataset.
- Explain the steps you would take to perform regression analysis in Excel.
6. Macros and Automation:
- Have you ever used Excel macros to automate a repetitive task? If so, provide an example.
- What are the potential risks and benefits of using macros in a data analysis workflow?
7. Data Validation:
- How do you implement data validation in Excel, and why is it important in data analysis?
- Can you give an example of when you used Excel's data validation to improve data accuracy?
8. Data Linking and External Data Sources:
- Describe a situation where you had to link data from multiple Excel workbooks. How did you approach this task?
- How would you import data from an external database into Excel for analysis?
ENJOY LEARNING ๐๐
๐3
1. How many report formats are available in Excel?
There are three report formats available in Excel; they are:
1. Compact Form
2. Outline Form
3. Tabular Form
2. What are sets in Tableau?
Sets are custom fields that define a subset of data based on some conditions. A set can be based on a computed condition, for example, a set may contain customers with sales over a certain threshold. Computed sets update as your data changes. Alternatively, a set can be based on specific data point in your view.
3. What is the difference between DROP and TRUNCATE commands?
DROP command removes a table and it cannot be rolled back from the database whereas TRUNCATE command removes all the rows from the table.
4. What is slicing in Python?
Ans: Slicing is used to access parts of sequences like lists, tuples, and strings. The syntax of slicing is-[start:end:step]. The step can be omitted as well. When we write [start:end] this returns all the elements of the sequence from the start (inclusive) till the end-1 element. If the start or end element is negative i, it means the ith element from the end.
5. What is the map() and filter() function in Python?
The map() function is a higher-order function. This function accepts another function and a sequence of โiterablesโ as parameters and provides output after applying the function to each iterable in the sequence. The filter() function is used to generate an output list of values that return true when the function is called.
There are three report formats available in Excel; they are:
1. Compact Form
2. Outline Form
3. Tabular Form
2. What are sets in Tableau?
Sets are custom fields that define a subset of data based on some conditions. A set can be based on a computed condition, for example, a set may contain customers with sales over a certain threshold. Computed sets update as your data changes. Alternatively, a set can be based on specific data point in your view.
3. What is the difference between DROP and TRUNCATE commands?
DROP command removes a table and it cannot be rolled back from the database whereas TRUNCATE command removes all the rows from the table.
4. What is slicing in Python?
Ans: Slicing is used to access parts of sequences like lists, tuples, and strings. The syntax of slicing is-[start:end:step]. The step can be omitted as well. When we write [start:end] this returns all the elements of the sequence from the start (inclusive) till the end-1 element. If the start or end element is negative i, it means the ith element from the end.
5. What is the map() and filter() function in Python?
The map() function is a higher-order function. This function accepts another function and a sequence of โiterablesโ as parameters and provides output after applying the function to each iterable in the sequence. The filter() function is used to generate an output list of values that return true when the function is called.
๐4โค1
Essential Topics to Master Data Science Interviews: ๐
SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some โค๏ธ if you're ready to elevate your data science game! ๐
ENJOY LEARNING ๐๐
SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some โค๏ธ if you're ready to elevate your data science game! ๐
ENJOY LEARNING ๐๐
๐7โค1
Questions & Answers for Data Analyst Interview
Question 1: Describe a time when you used data analysis to solve a business problem.
Ideal answer: This is your opportunity to showcase your data analysis skills in a real-world context. Be specific and provide examples of your work. For example, you could talk about a time when you used data analysis to identify customer churn, improve marketing campaigns, or optimize product development.
Question 2: What are some of the challenges you have faced in previous data analysis projects, and how did you overcome them?
Ideal answer: This question is designed to assess your problem-solving skills and your ability to learn from your experiences. Be honest and upfront about the challenges you have faced, but also focus on how you overcame them. For example, you could talk about a time when you had to deal with a large and messy dataset, or a time when you had to work with a tight deadline.
Question 3: How do you handle missing values in a dataset?
Ideal answer: Missing values are a common problem in data analysis, so it is important to know how to handle them properly. There are a variety of different methods that you can use, depending on the specific situation. For example, you could delete the rows with missing values, impute the missing values using a statistical method, or assign a default value to the missing values.
Question 4: How do you identify and remove outliers?
Ideal answer: Outliers are data points that are significantly different from the rest of the data. They can be caused by data errors or by natural variation in the data. It is important to identify and remove outliers before performing data analysis, as they can skew the results. There are a variety of different methods that you can use to identify outliers, such as the interquartile range (IQR) method or the standard deviation method.
Question 5: How do you interpret and communicate the results of your data analysis to non-technical audiences?
Ideal answer: It is important to be able to communicate your data analysis findings to both technical and non-technical audiences. When communicating to non-technical audiences, it is important to avoid using jargon and to focus on the key takeaways from your analysis. You can use data visualization tools to help you communicate your findings in a clear and concise way.
In addition to providing specific examples and answers to the questions, it is also important to be enthusiastic and demonstrate your passion for data analysis. Show the interviewer that you are excited about the opportunity to use your skills to solve real-world problems.
Question 1: Describe a time when you used data analysis to solve a business problem.
Ideal answer: This is your opportunity to showcase your data analysis skills in a real-world context. Be specific and provide examples of your work. For example, you could talk about a time when you used data analysis to identify customer churn, improve marketing campaigns, or optimize product development.
Question 2: What are some of the challenges you have faced in previous data analysis projects, and how did you overcome them?
Ideal answer: This question is designed to assess your problem-solving skills and your ability to learn from your experiences. Be honest and upfront about the challenges you have faced, but also focus on how you overcame them. For example, you could talk about a time when you had to deal with a large and messy dataset, or a time when you had to work with a tight deadline.
Question 3: How do you handle missing values in a dataset?
Ideal answer: Missing values are a common problem in data analysis, so it is important to know how to handle them properly. There are a variety of different methods that you can use, depending on the specific situation. For example, you could delete the rows with missing values, impute the missing values using a statistical method, or assign a default value to the missing values.
Question 4: How do you identify and remove outliers?
Ideal answer: Outliers are data points that are significantly different from the rest of the data. They can be caused by data errors or by natural variation in the data. It is important to identify and remove outliers before performing data analysis, as they can skew the results. There are a variety of different methods that you can use to identify outliers, such as the interquartile range (IQR) method or the standard deviation method.
Question 5: How do you interpret and communicate the results of your data analysis to non-technical audiences?
Ideal answer: It is important to be able to communicate your data analysis findings to both technical and non-technical audiences. When communicating to non-technical audiences, it is important to avoid using jargon and to focus on the key takeaways from your analysis. You can use data visualization tools to help you communicate your findings in a clear and concise way.
In addition to providing specific examples and answers to the questions, it is also important to be enthusiastic and demonstrate your passion for data analysis. Show the interviewer that you are excited about the opportunity to use your skills to solve real-world problems.
โค2๐2
Everyone thinks being a great data analyst is about advanced algorithms and complex dashboards.
But real data excellence comes from methodical habits that build trust and deliver real insights.
Here are 20 signs of a truly effective analyst ๐
โ They document every step of their analysis
โ Clear notes make their work reproducible and trustworthy.
โ They check data quality before the analysis begins
โ Garbage in = garbage out. Always validate first.
โ They use version control religiously
โ Every code change is tracked. Nothing gets lost.
โ They explore data thoroughly before diving in
โ Understanding context prevents costly misinterpretations.
โ They create automated scripts for repetitive tasks
โ Efficiency isnโt a luxuryโitโs a necessity.
โ They maintain a reusable code library
โ Smart analysts never solve the same problem twice.
โ They test assumptions with multiple validation methods
โ One test isnโt enough; they triangulate confidence.
โ They organize project files logically
โ Their work is navigable by anyone, not just themselves.
โ They seek peer reviews on critical work
โ Fresh eyes catch blind spots.
โ They continuously absorb industry knowledge
โ Learning never stops. Trends change too quickly.
โ They prioritize business-impacting projects
โ Every analysis must drive real decisions.
โ They explain complex findings simply
โ Technical brilliance is useless without clarity.
โ They write readable, well-commented code
โ Their work is accessible to others, long after they're gone.
โ They maintain robust backup systems
โ Data loss is never an option.
โ They learn from analytical mistakes
โ Errors become stepping stones, not roadblocks.
โ They build strong stakeholder relationships
โ Data is only valuable when people use it.
โ They break complex projects into manageable chunks
โ Progress happens through disciplined, incremental work.
โ They handle sensitive data with proper security
โ Compliance isnโt optionalโitโs foundational.
โ They create visualizations that tell clear stories
โ A chart without a narrative is just decoration.
โ They actively seek evidence against their conclusions
โ Confirmation bias is their biggest enemy.
The best analysts arenโt the ones with the most toolsโtheyโre the ones with the most rigorous practices.
Which of these habits could transform your data work today? ๐
Join biggest telegram channel to master data analytics: https://t.iss.one/sqlspecialist
But real data excellence comes from methodical habits that build trust and deliver real insights.
Here are 20 signs of a truly effective analyst ๐
โ They document every step of their analysis
โ Clear notes make their work reproducible and trustworthy.
โ They check data quality before the analysis begins
โ Garbage in = garbage out. Always validate first.
โ They use version control religiously
โ Every code change is tracked. Nothing gets lost.
โ They explore data thoroughly before diving in
โ Understanding context prevents costly misinterpretations.
โ They create automated scripts for repetitive tasks
โ Efficiency isnโt a luxuryโitโs a necessity.
โ They maintain a reusable code library
โ Smart analysts never solve the same problem twice.
โ They test assumptions with multiple validation methods
โ One test isnโt enough; they triangulate confidence.
โ They organize project files logically
โ Their work is navigable by anyone, not just themselves.
โ They seek peer reviews on critical work
โ Fresh eyes catch blind spots.
โ They continuously absorb industry knowledge
โ Learning never stops. Trends change too quickly.
โ They prioritize business-impacting projects
โ Every analysis must drive real decisions.
โ They explain complex findings simply
โ Technical brilliance is useless without clarity.
โ They write readable, well-commented code
โ Their work is accessible to others, long after they're gone.
โ They maintain robust backup systems
โ Data loss is never an option.
โ They learn from analytical mistakes
โ Errors become stepping stones, not roadblocks.
โ They build strong stakeholder relationships
โ Data is only valuable when people use it.
โ They break complex projects into manageable chunks
โ Progress happens through disciplined, incremental work.
โ They handle sensitive data with proper security
โ Compliance isnโt optionalโitโs foundational.
โ They create visualizations that tell clear stories
โ A chart without a narrative is just decoration.
โ They actively seek evidence against their conclusions
โ Confirmation bias is their biggest enemy.
The best analysts arenโt the ones with the most toolsโtheyโre the ones with the most rigorous practices.
Which of these habits could transform your data work today? ๐
Join biggest telegram channel to master data analytics: https://t.iss.one/sqlspecialist
๐3๐3
Excel Interview Question & Anwers for Data Analytics Interviewโ
[Part-1]
What is Excel and what are its primary uses?
Excel is a software program created by Microsoft that uses spreadsheets to organize numbers and data with formulas and functions. Its primary uses include creating spreadsheets, performing calculations, and making charts.
How do you open a new workbook in Excel?
To open a new workbook in Excel, you can either click on "File" in the menu, then select "New" and "Blank Workbook," or you can press "Ctrl + N" on your keyboard.
Explain the difference between a workbook and a worksheet.
A workbook is like a file that contains all your data and is made up of one or more worksheets. Worksheets are the individual pages within a workbook where you enter and manipulate data.
How do you navigate between different worksheets in Excel?
To move between different worksheets in Excel, you can click on the tabs at the bottom of the Excel window. Each tab represents a different worksheet.
Like for more ๐
Join: https://t.iss.one/excel_analyst
[Part-1]
What is Excel and what are its primary uses?
Excel is a software program created by Microsoft that uses spreadsheets to organize numbers and data with formulas and functions. Its primary uses include creating spreadsheets, performing calculations, and making charts.
How do you open a new workbook in Excel?
To open a new workbook in Excel, you can either click on "File" in the menu, then select "New" and "Blank Workbook," or you can press "Ctrl + N" on your keyboard.
Explain the difference between a workbook and a worksheet.
A workbook is like a file that contains all your data and is made up of one or more worksheets. Worksheets are the individual pages within a workbook where you enter and manipulate data.
How do you navigate between different worksheets in Excel?
To move between different worksheets in Excel, you can click on the tabs at the bottom of the Excel window. Each tab represents a different worksheet.
Like for more ๐
Join: https://t.iss.one/excel_analyst
๐4
1.How to create filters in Power BI?
Filters are an integral part of Power BI reports. They are used to slice and dice the data as per the dimensions we want. Filters are created in a couple of ways.
Using Slicers: A slicer is a visual under Visualization Pane. This can be added to the design view to filter our reports. When a slicer is added to the design view, it requires a field to be added to it. For example- Slicer can be added for Country fields. Then the data can be filtered based on countries.
Using Filter Pane: The Power BI team has added a filter pane to the reports, which is a single space where we can add different fields as filters. And these fields can be added depending on whether you want to filter only one visual(Visual level filter), or all the visuals in the report page(Page level filters), or applicable to all the pages of the report(report level filters)
2.How to sort data in Power BI?
Sorting is available in multiple formats. In the data view, a common sorting option of alphabetical order is there. Apart from that, we have the option of Sort by column, where one can sort a column based on another column. The sorting option is available in visuals as well. Sort by ascending and descending option by the fields and measure present in the visual is also available.
3.How to convert pdf to excel?
Open the PDF document you want to convert in XLSX format in Acrobat DC.
Go to the right pane and click on the โExport PDFโ option.
Choose spreadsheet as the Export format.
Select โMicrosoft Excel Workbook.โ
Now click โExport.โ
Download the converted file or share it.
4. How to enable macros in excel?
Click the file tab and then click โOptions.โ
A dialog box will appear. In the โExcel Optionsโ dialog box, click on the โTrust Centerโ and then โTrust Center Settings.โ
Go to the โMacro Settingsโ and select โenable all macros.โ
Click OK to apply the macro settings.
Filters are an integral part of Power BI reports. They are used to slice and dice the data as per the dimensions we want. Filters are created in a couple of ways.
Using Slicers: A slicer is a visual under Visualization Pane. This can be added to the design view to filter our reports. When a slicer is added to the design view, it requires a field to be added to it. For example- Slicer can be added for Country fields. Then the data can be filtered based on countries.
Using Filter Pane: The Power BI team has added a filter pane to the reports, which is a single space where we can add different fields as filters. And these fields can be added depending on whether you want to filter only one visual(Visual level filter), or all the visuals in the report page(Page level filters), or applicable to all the pages of the report(report level filters)
2.How to sort data in Power BI?
Sorting is available in multiple formats. In the data view, a common sorting option of alphabetical order is there. Apart from that, we have the option of Sort by column, where one can sort a column based on another column. The sorting option is available in visuals as well. Sort by ascending and descending option by the fields and measure present in the visual is also available.
3.How to convert pdf to excel?
Open the PDF document you want to convert in XLSX format in Acrobat DC.
Go to the right pane and click on the โExport PDFโ option.
Choose spreadsheet as the Export format.
Select โMicrosoft Excel Workbook.โ
Now click โExport.โ
Download the converted file or share it.
4. How to enable macros in excel?
Click the file tab and then click โOptions.โ
A dialog box will appear. In the โExcel Optionsโ dialog box, click on the โTrust Centerโ and then โTrust Center Settings.โ
Go to the โMacro Settingsโ and select โenable all macros.โ
Click OK to apply the macro settings.
๐4
You can download them from our WhatsApp channel: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
WhatsApp.com
Python Programming | WhatsApp Channel
Python Programming WhatsApp Channel. Perfect channel to learn Python Programming ๐จโ๐ป๐ฉโ๐ป
- โ Free Courses
- โ Coding Projects
- โ Important Pdfs
- โ Artificial Intelligence Bootcamps
- โ Data Science Notes
- โ Latest Tech & AI Trends
For promotions, contactโฆ
- โ Free Courses
- โ Coding Projects
- โ Important Pdfs
- โ Artificial Intelligence Bootcamps
- โ Data Science Notes
- โ Latest Tech & AI Trends
For promotions, contactโฆ
Walmart Data Analyst Interview Questions: Python & SQL โ
๐2