Creating a data science and machine learning project involves several steps, from defining the problem to deploying the model. Here is a general outline of how you can create a data science and ML project:
1. Define the Problem: Start by clearly defining the problem you want to solve. Understand the business context, the goals of the project, and what insights or predictions you aim to derive from the data.
2. Collect Data: Gather relevant data that will help you address the problem. This could involve collecting data from various sources, such as databases, APIs, CSV files, or web scraping.
3. Data Preprocessing: Clean and preprocess the data to make it suitable for analysis and modeling. This may involve handling missing values, encoding categorical variables, scaling features, and other data cleaning tasks.
4. Exploratory Data Analysis (EDA): Perform exploratory data analysis to understand the data better. Visualize the data, identify patterns, correlations, and outliers that may impact your analysis.
5. Feature Engineering: Create new features or transform existing features to improve the performance of your machine learning model. Feature engineering is crucial for building a successful ML model.
6. Model Selection: Choose the appropriate machine learning algorithm based on the problem you are trying to solve (classification, regression, clustering, etc.). Experiment with different models and hyperparameters to find the best-performing one.
7. Model Training: Split your data into training and testing sets and train your machine learning model on the training data. Evaluate the model's performance on the testing data using appropriate metrics.
8. Model Evaluation: Evaluate the performance of your model using metrics like accuracy, precision, recall, F1-score, ROC-AUC, etc. Make sure to analyze the results and iterate on your model if needed.
9. Deployment: Once you have a satisfactory model, deploy it into production. This could involve creating an API for real-time predictions, integrating it into a web application, or any other method of making your model accessible.
10. Monitoring and Maintenance: Monitor the performance of your deployed model and ensure that it continues to perform well over time. Update the model as needed based on new data or changes in the problem domain.
1. Define the Problem: Start by clearly defining the problem you want to solve. Understand the business context, the goals of the project, and what insights or predictions you aim to derive from the data.
2. Collect Data: Gather relevant data that will help you address the problem. This could involve collecting data from various sources, such as databases, APIs, CSV files, or web scraping.
3. Data Preprocessing: Clean and preprocess the data to make it suitable for analysis and modeling. This may involve handling missing values, encoding categorical variables, scaling features, and other data cleaning tasks.
4. Exploratory Data Analysis (EDA): Perform exploratory data analysis to understand the data better. Visualize the data, identify patterns, correlations, and outliers that may impact your analysis.
5. Feature Engineering: Create new features or transform existing features to improve the performance of your machine learning model. Feature engineering is crucial for building a successful ML model.
6. Model Selection: Choose the appropriate machine learning algorithm based on the problem you are trying to solve (classification, regression, clustering, etc.). Experiment with different models and hyperparameters to find the best-performing one.
7. Model Training: Split your data into training and testing sets and train your machine learning model on the training data. Evaluate the model's performance on the testing data using appropriate metrics.
8. Model Evaluation: Evaluate the performance of your model using metrics like accuracy, precision, recall, F1-score, ROC-AUC, etc. Make sure to analyze the results and iterate on your model if needed.
9. Deployment: Once you have a satisfactory model, deploy it into production. This could involve creating an API for real-time predictions, integrating it into a web application, or any other method of making your model accessible.
10. Monitoring and Maintenance: Monitor the performance of your deployed model and ensure that it continues to perform well over time. Update the model as needed based on new data or changes in the problem domain.
โค2
๐๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ - ๐ญ๐ฌ๐ฌ% ๐๐ฅ๐๐ ๐
Start learning industry-relevant data skills today at zero cost!
โ 100% FREE Certification
โ Learn Data Analysis, Excel, SQL, Power BI & more
โ Boost your resume with job-ready skills
๐ Perfect for Students, Freshers & Career Switchers
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4lp7hXQ
๐ Enroll Now & Get Certified
Start learning industry-relevant data skills today at zero cost!
โ 100% FREE Certification
โ Learn Data Analysis, Excel, SQL, Power BI & more
โ Boost your resume with job-ready skills
๐ Perfect for Students, Freshers & Career Switchers
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4lp7hXQ
๐ Enroll Now & Get Certified
โค1
One day or Day one. You decide.
Data Science edition.
๐ข๐ป๐ฒ ๐๐ฎ๐ : I will learn SQL.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Download mySQL Workbench.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will build my projects for my portfolio.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Look on Kaggle for a dataset to work on.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will master statistics.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Start the free Khan Academy Statistics and Probability course.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will learn to tell stories with data.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Install Tableau Public and create my first chart.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will become a Data Scientist.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Update my resume and apply to some Data Science job postings.
Data Science edition.
๐ข๐ป๐ฒ ๐๐ฎ๐ : I will learn SQL.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Download mySQL Workbench.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will build my projects for my portfolio.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Look on Kaggle for a dataset to work on.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will master statistics.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Start the free Khan Academy Statistics and Probability course.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will learn to tell stories with data.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Install Tableau Public and create my first chart.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will become a Data Scientist.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Update my resume and apply to some Data Science job postings.
โค1
๐๐ง๐ผ๐ฝ ๐ฏ ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐ผ๐ด๐น๐ฒ-๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฒ๐ฑ ๐ฃ๐๐๐ต๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ฎ๐ฌ๐ฎ๐ฑ๐
Want to boost your tech career? Learn Python for FREE with Google-certified courses!
Perfect for beginnersโno expensive bootcamps needed.
๐ฅ Learn Python for AI, Data, Automation & More!
๐๐ฆ๐๐ฎ๐ฟ๐ ๐ก๐ผ๐๐
https://pdlink.in/42okGqG
โ Future You Will Thank You!
Want to boost your tech career? Learn Python for FREE with Google-certified courses!
Perfect for beginnersโno expensive bootcamps needed.
๐ฅ Learn Python for AI, Data, Automation & More!
๐๐ฆ๐๐ฎ๐ฟ๐ ๐ก๐ผ๐๐
https://pdlink.in/42okGqG
โ Future You Will Thank You!
โค2
๐๐ฒ๐ฐ๐ผ๐บ๐ฒ ๐ฎ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฒ๐ฑ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐๐ป ๐ง๐ผ๐ฝ ๐ ๐ก๐๐๐
Learn Data Analytics, Data Science & AI From Top Data Experts
Modes :- Online & Offline (Hyderabad/Pune)
๐๐ถ๐ด๐ต๐น๐ถ๐ด๐ต๐๐ฒ๐:-
- 12.65 Lakhs Highest Salary
- 500+ Partner Companies
- 100% Job Assistance
- 5.7 LPA Average Salary
๐๐ผ๐ผ๐ธ ๐ฎ ๐๐ฅ๐๐ ๐๐ฒ๐บ๐ผ๐:-
๐ข๐ป๐น๐ถ๐ป๐ฒ :- https://pdlink.in/4fdWxJB
๐๐๐ฑ๐ฒ๐ฟ๐ฎ๐ฏ๐ฎ๐ฑ :- https://pdlink.in/4kFhjn3
๐ฃ๐๐ป๐ฒ :- https://pdlink.in/45p4GrC
( Hurry Up ๐โโ๏ธLimited Slots )
Learn Data Analytics, Data Science & AI From Top Data Experts
Modes :- Online & Offline (Hyderabad/Pune)
๐๐ถ๐ด๐ต๐น๐ถ๐ด๐ต๐๐ฒ๐:-
- 12.65 Lakhs Highest Salary
- 500+ Partner Companies
- 100% Job Assistance
- 5.7 LPA Average Salary
๐๐ผ๐ผ๐ธ ๐ฎ ๐๐ฅ๐๐ ๐๐ฒ๐บ๐ผ๐:-
๐ข๐ป๐น๐ถ๐ป๐ฒ :- https://pdlink.in/4fdWxJB
๐๐๐ฑ๐ฒ๐ฟ๐ฎ๐ฏ๐ฎ๐ฑ :- https://pdlink.in/4kFhjn3
๐ฃ๐๐ป๐ฒ :- https://pdlink.in/45p4GrC
( Hurry Up ๐โโ๏ธLimited Slots )
โค1
Here's a good list of cheat sheets for programmers (all free):
Data Science Cheatsheet
https://github.com/aaronwangy/Data-Science-Cheatsheet
SQL Cheatsheet
sqltutorial.org/sql-cheat-sheet
t.iss.one/sqlspecialist/827
https://www.sqltutorial.org/wp-content/uploads/2016/04/SQL-cheat-sheet.pdf
Java Programming Cheatsheet
https://introcs.cs.princeton.edu/java/11cheatsheet/
Javascript Cheatsheet
quickref.me/javascript.html
t.iss.one/javascript_courses/532
Data Analytics Cheatsheets
https://dataanalytics.beehiiv.com/p/data
Python Cheat sheet
quickref.me/python.html
https://t.iss.one/pythondevelopersindia/314
GIT and Machine Learning Cheatsheet
https://t.iss.one/datasciencefun/714
HTML Cheatsheet
https://web.stanford.edu/group/csp/cs21/htmlcheatsheet.pdf
htmlcheatsheet.com
CSS Cheatsheet
htmlcheatsheet.com/css
jQuery Cheatsheet
t.iss.one/webdevelopmentbook/90
Data Visualization
t.iss.one/datasciencefun/698
Free entry to our WhatsApp channel
Join @free4unow_backup for more free resources
Like for more โค๏ธ
ENJOY LEARNING๐๐
Data Science Cheatsheet
https://github.com/aaronwangy/Data-Science-Cheatsheet
SQL Cheatsheet
sqltutorial.org/sql-cheat-sheet
t.iss.one/sqlspecialist/827
https://www.sqltutorial.org/wp-content/uploads/2016/04/SQL-cheat-sheet.pdf
Java Programming Cheatsheet
https://introcs.cs.princeton.edu/java/11cheatsheet/
Javascript Cheatsheet
quickref.me/javascript.html
t.iss.one/javascript_courses/532
Data Analytics Cheatsheets
https://dataanalytics.beehiiv.com/p/data
Python Cheat sheet
quickref.me/python.html
https://t.iss.one/pythondevelopersindia/314
GIT and Machine Learning Cheatsheet
https://t.iss.one/datasciencefun/714
HTML Cheatsheet
https://web.stanford.edu/group/csp/cs21/htmlcheatsheet.pdf
htmlcheatsheet.com
CSS Cheatsheet
htmlcheatsheet.com/css
jQuery Cheatsheet
t.iss.one/webdevelopmentbook/90
Data Visualization
t.iss.one/datasciencefun/698
Free entry to our WhatsApp channel
Join @free4unow_backup for more free resources
Like for more โค๏ธ
ENJOY LEARNING๐๐
โค1
Forwarded from Data Science & Machine Learning
๐ง๐ต๐ฒ ๐๐ฒ๐๐ ๐๐ฟ๐ฒ๐ฒ ๐ฏ๐ฌ-๐๐ฎ๐ ๐ฅ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ ๐๐ผ ๐ฆ๐๐ฎ๐ฟ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ผ๐๐ฟ๐ป๐ฒ๐๐
๐ If I had to restart my Data Science journey in 2025, this is where Iโd beginโจ๏ธ
Meet 30 Days of Data Science โ a free and beginner-friendly GitHub repository that guides you through the core fundamentals of data science in just one month๐งโ๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4mfNdXR
Simply bookmark the page, pick Day 1, and begin your journeyโ ๏ธ
๐ If I had to restart my Data Science journey in 2025, this is where Iโd beginโจ๏ธ
Meet 30 Days of Data Science โ a free and beginner-friendly GitHub repository that guides you through the core fundamentals of data science in just one month๐งโ๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4mfNdXR
Simply bookmark the page, pick Day 1, and begin your journeyโ ๏ธ
โค1
Roadmap to Becoming a Python Developer ๐
1. Basics ๐ฑ
- Learn programming fundamentals and Python syntax.
2. Core Python ๐ง
- Master data structures, functions, and OOP.
3. Advanced Python ๐
- Explore modules, file handling, and exceptions.
4. Web Development ๐
- Use Django or Flask; build REST APIs.
5. Data Science ๐
- Learn NumPy, pandas, and Matplotlib.
6. Projects & Practice๐ก
- Build projects, contribute to open-source, join communities.
Like for more โค๏ธ
ENJOY LEARNING ๐๐
1. Basics ๐ฑ
- Learn programming fundamentals and Python syntax.
2. Core Python ๐ง
- Master data structures, functions, and OOP.
3. Advanced Python ๐
- Explore modules, file handling, and exceptions.
4. Web Development ๐
- Use Django or Flask; build REST APIs.
5. Data Science ๐
- Learn NumPy, pandas, and Matplotlib.
6. Projects & Practice๐ก
- Build projects, contribute to open-source, join communities.
Like for more โค๏ธ
ENJOY LEARNING ๐๐
โค1
๐ ๐๐๐๐๐ง๐ญ๐ฎ๐ซ๐ ๐
๐๐๐ ๐๐๐ซ๐ญ๐ข๐๐ข๐๐๐ญ๐ข๐จ๐ง ๐๐จ๐ฎ๐ซ๐ฌ๐๐ฌ | ๐๐ป๐ฟ๐ผ๐น๐น ๐ก๐ผ๐ ๐
Boost your skills with 100% FREE certification courses from Accenture!
๐ FREE Courses Offered:
1๏ธโฃ Data Processing and Visualization
2๏ธโฃ Exploratory Data Analysis
3๏ธโฃ SQL Fundamentals
4๏ธโฃ Python Basics
5๏ธโฃ Acquiring Data
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/45WnGy1
โ Learn Online | ๐ Get Certified
Boost your skills with 100% FREE certification courses from Accenture!
๐ FREE Courses Offered:
1๏ธโฃ Data Processing and Visualization
2๏ธโฃ Exploratory Data Analysis
3๏ธโฃ SQL Fundamentals
4๏ธโฃ Python Basics
5๏ธโฃ Acquiring Data
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/45WnGy1
โ Learn Online | ๐ Get Certified
โค2
Machine Learning โ Essential Concepts ๐
1๏ธโฃ Types of Machine Learning
Supervised Learning โ Uses labeled data to train models.
Examples: Linear Regression, Decision Trees, Random Forest, SVM
Unsupervised Learning โ Identifies patterns in unlabeled data.
Examples: Clustering (K-Means, DBSCAN), PCA
Reinforcement Learning โ Models learn through rewards and penalties.
Examples: Q-Learning, Deep Q Networks
2๏ธโฃ Key Algorithms
Regression โ Predicts continuous values (Linear Regression, Ridge, Lasso).
Classification โ Categorizes data into classes (Logistic Regression, Decision Tree, SVM, Naรฏve Bayes).
Clustering โ Groups similar data points (K-Means, Hierarchical Clustering, DBSCAN).
Dimensionality Reduction โ Reduces the number of features (PCA, t-SNE, LDA).
3๏ธโฃ Model Training & Evaluation
Train-Test Split โ Dividing data into training and testing sets.
Cross-Validation โ Splitting data multiple times for better accuracy.
Metrics โ Evaluating models with RMSE, Accuracy, Precision, Recall, F1-Score, ROC-AUC.
4๏ธโฃ Feature Engineering
Handling missing data (mean imputation, dropna()).
Encoding categorical variables (One-Hot Encoding, Label Encoding).
Feature Scaling (Normalization, Standardization).
5๏ธโฃ Overfitting & Underfitting
Overfitting โ Model learns noise, performs well on training but poorly on test data.
Underfitting โ Model is too simple and fails to capture patterns.
Solution: Regularization (L1, L2), Hyperparameter Tuning.
6๏ธโฃ Ensemble Learning
Combining multiple models to improve performance.
Bagging (Random Forest)
Boosting (XGBoost, Gradient Boosting, AdaBoost)
7๏ธโฃ Deep Learning Basics
Neural Networks (ANN, CNN, RNN).
Activation Functions (ReLU, Sigmoid, Tanh).
Backpropagation & Gradient Descent.
8๏ธโฃ Model Deployment
Deploy models using Flask, FastAPI, or Streamlit.
Model versioning with MLflow.
Cloud deployment (AWS SageMaker, Google Vertex AI).
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
1๏ธโฃ Types of Machine Learning
Supervised Learning โ Uses labeled data to train models.
Examples: Linear Regression, Decision Trees, Random Forest, SVM
Unsupervised Learning โ Identifies patterns in unlabeled data.
Examples: Clustering (K-Means, DBSCAN), PCA
Reinforcement Learning โ Models learn through rewards and penalties.
Examples: Q-Learning, Deep Q Networks
2๏ธโฃ Key Algorithms
Regression โ Predicts continuous values (Linear Regression, Ridge, Lasso).
Classification โ Categorizes data into classes (Logistic Regression, Decision Tree, SVM, Naรฏve Bayes).
Clustering โ Groups similar data points (K-Means, Hierarchical Clustering, DBSCAN).
Dimensionality Reduction โ Reduces the number of features (PCA, t-SNE, LDA).
3๏ธโฃ Model Training & Evaluation
Train-Test Split โ Dividing data into training and testing sets.
Cross-Validation โ Splitting data multiple times for better accuracy.
Metrics โ Evaluating models with RMSE, Accuracy, Precision, Recall, F1-Score, ROC-AUC.
4๏ธโฃ Feature Engineering
Handling missing data (mean imputation, dropna()).
Encoding categorical variables (One-Hot Encoding, Label Encoding).
Feature Scaling (Normalization, Standardization).
5๏ธโฃ Overfitting & Underfitting
Overfitting โ Model learns noise, performs well on training but poorly on test data.
Underfitting โ Model is too simple and fails to capture patterns.
Solution: Regularization (L1, L2), Hyperparameter Tuning.
6๏ธโฃ Ensemble Learning
Combining multiple models to improve performance.
Bagging (Random Forest)
Boosting (XGBoost, Gradient Boosting, AdaBoost)
7๏ธโฃ Deep Learning Basics
Neural Networks (ANN, CNN, RNN).
Activation Functions (ReLU, Sigmoid, Tanh).
Backpropagation & Gradient Descent.
8๏ธโฃ Model Deployment
Deploy models using Flask, FastAPI, or Streamlit.
Model versioning with MLflow.
Cloud deployment (AWS SageMaker, Google Vertex AI).
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
โค1๐1๐ฅฐ1
Forwarded from SQL Programming Resources
๐ณ ๐ ๐๐๐-๐๐ป๐ผ๐ ๐ฆ๐ค๐ ๐๐ผ๐ป๐ฐ๐ฒ๐ฝ๐๐ ๐๐๐ฒ๐ฟ๐ ๐๐๐ฝ๐ถ๐ฟ๐ถ๐ป๐ด ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐ฆ๐ต๐ผ๐๐น๐ฑ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐
If youโre serious about becoming a data analyst, thereโs no skipping SQL. Itโs not just another technical skill โ itโs the core language for data analytics.๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/44S3Xi5
This guide covers 7 key SQL concepts that every beginner must learnโ ๏ธ
If youโre serious about becoming a data analyst, thereโs no skipping SQL. Itโs not just another technical skill โ itโs the core language for data analytics.๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/44S3Xi5
This guide covers 7 key SQL concepts that every beginner must learnโ ๏ธ
โค1
๐ ๐๐ผ๐ผ๐ด๐น๐ฒ ๐ญ๐ฌ๐ฌ% ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ | ๐๐ป๐ฟ๐ผ๐น๐น ๐ก๐ผ๐ ๐
Upgrade your tech skills with FREE certification courses from Google
๐ Courses Offered:
1๏ธโฃ Google Cloud โ Generative AI
2๏ธโฃ Google Cloud Computing Foundations with Kubernetes
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/46uQii9
โ 100% Online | ๐ Get Certified by Google Cloud
Upgrade your tech skills with FREE certification courses from Google
๐ Courses Offered:
1๏ธโฃ Google Cloud โ Generative AI
2๏ธโฃ Google Cloud Computing Foundations with Kubernetes
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/46uQii9
โ 100% Online | ๐ Get Certified by Google Cloud
โค1
๐ฆ๐ค๐ ๐ ๐๐๐-๐๐ป๐ผ๐ ๐๐ถ๐ณ๐ณ๐ฒ๐ฟ๐ฒ๐ป๐ฐ๐ฒ๐ ๐
Whether you're writing daily queries or preparing for interviews, understanding these subtle SQL differences can make a big impact on both performance and accuracy.
๐ง Hereโs a powerful visual that compares the most commonly misunderstood SQL concepts โ side by side.
๐ ๐๐ผ๐๐ฒ๐ฟ๐ฒ๐ฑ ๐ถ๐ป ๐๐ต๐ถ๐ ๐๐ป๐ฎ๐ฝ๐๐ต๐ผ๐:
๐น RANK() vs DENSE_RANK()
๐น HAVING vs WHERE
๐น UNION vs UNION ALL
๐น JOIN vs UNION
๐น CTE vs TEMP TABLE
๐น SUBQUERY vs CTE
๐น ISNULL vs COALESCE
๐น DELETE vs DROP
๐น INTERSECT vs INNER JOIN
๐น EXCEPT vs NOT IN
React โฅ๏ธ for detailed post with examples
Whether you're writing daily queries or preparing for interviews, understanding these subtle SQL differences can make a big impact on both performance and accuracy.
๐ง Hereโs a powerful visual that compares the most commonly misunderstood SQL concepts โ side by side.
๐ ๐๐ผ๐๐ฒ๐ฟ๐ฒ๐ฑ ๐ถ๐ป ๐๐ต๐ถ๐ ๐๐ป๐ฎ๐ฝ๐๐ต๐ผ๐:
๐น RANK() vs DENSE_RANK()
๐น HAVING vs WHERE
๐น UNION vs UNION ALL
๐น JOIN vs UNION
๐น CTE vs TEMP TABLE
๐น SUBQUERY vs CTE
๐น ISNULL vs COALESCE
๐น DELETE vs DROP
๐น INTERSECT vs INNER JOIN
๐น EXCEPT vs NOT IN
React โฅ๏ธ for detailed post with examples
โค1๐1