๐ฆ๐๐ถ๐น๐น ๐๐ฎ๐ถ๐น๐ถ๐ป๐ด ๐ง๐ฒ๐ฐ๐ต ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐? ๐ง๐ต๐ฒ๐๐ฒ ๐ฏ ๐๐ฟ๐ฒ๐ฒ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ ๐๐ผ๐๐น๐ฑ ๐๐ถ๐ป๐ฎ๐น๐น๐ ๐๐ต๐ฎ๐ป๐ด๐ฒ ๐ง๐ต๐ฎ๐๐
Youโve spent hours solving LeetCode problems. Youโve gone through entire DSA playlists๐ฃโจ๏ธ
The internet is filled with confusing roadmaps and endless practice sets. But what you need is clarity, structure, and confidence. Thatโs exactly what these 3 high-impact, free YouTube videos give you.๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4feEnaA
This is your new cheat codeโ ๏ธ
Youโve spent hours solving LeetCode problems. Youโve gone through entire DSA playlists๐ฃโจ๏ธ
The internet is filled with confusing roadmaps and endless practice sets. But what you need is clarity, structure, and confidence. Thatโs exactly what these 3 high-impact, free YouTube videos give you.๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4feEnaA
This is your new cheat codeโ ๏ธ
โค1
Accenture Data Scientist Interview Questions!
1st round-
Technical Round
- 2 SQl questions based on playing around views and table, which could be solved by both subqueries and window functions.
- 2 Pandas questions , testing your knowledge on filtering , concatenation , joins and merge.
- 3-4 Machine Learning questions completely based on my Projects, starting from
Explaining the problem statements and then discussing the roadblocks of those projects and some cross questions.
2nd round-
- Couple of python questions agains on pandas and numpy and some hypothetical data.
- Machine Learning projects explanations and cross questions.
- Case Study and a quiz question.
3rd and Final round.
HR interview
Simple Scenerio Based Questions.
Data Science Resources
๐๐
https://t.iss.one/datasciencefun
Like if you need similar content ๐๐
1st round-
Technical Round
- 2 SQl questions based on playing around views and table, which could be solved by both subqueries and window functions.
- 2 Pandas questions , testing your knowledge on filtering , concatenation , joins and merge.
- 3-4 Machine Learning questions completely based on my Projects, starting from
Explaining the problem statements and then discussing the roadblocks of those projects and some cross questions.
2nd round-
- Couple of python questions agains on pandas and numpy and some hypothetical data.
- Machine Learning projects explanations and cross questions.
- Case Study and a quiz question.
3rd and Final round.
HR interview
Simple Scenerio Based Questions.
Data Science Resources
๐๐
https://t.iss.one/datasciencefun
Like if you need similar content ๐๐
โค2
Forwarded from Data Analyst Jobs
๐๐ฅ๐๐ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ผ ๐๐ป๐ฟ๐ผ๐น๐น ๐๐ป ๐ฎ๐ฌ๐ฎ๐ฑ ๐
Learn Fundamental Skills with Free Online Courses & Earn Certificates
- AI
- GenAI
- Data Science,
- BigData
- Python
- Cloud Computing
- Machine Learning
- Cyber Security
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4dJ27Ta
Enroll for FREE & Get Certified ๐
Learn Fundamental Skills with Free Online Courses & Earn Certificates
- AI
- GenAI
- Data Science,
- BigData
- Python
- Cloud Computing
- Machine Learning
- Cyber Security
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4dJ27Ta
Enroll for FREE & Get Certified ๐
๐ Coding Projects & Ideas ๐ป
Inspire your next portfolio project โ from beginner to pro!
๐๏ธ Beginner-Friendly Projects
1๏ธโฃ To-Do List App โ Create tasks, mark as done, store in browser.
2๏ธโฃ Weather App โ Fetch live weather data using a public API.
3๏ธโฃ Unit Converter โ Convert currencies, length, or weight.
4๏ธโฃ Personal Portfolio Website โ Showcase skills, projects & resume.
5๏ธโฃ Calculator App โ Build a clean UI for basic math operations.
โ๏ธ Intermediate Projects
6๏ธโฃ Chatbot with AI โ Use NLP libraries to answer user queries.
7๏ธโฃ Stock Market Tracker โ Real-time graphs & stock performance.
8๏ธโฃ Expense Tracker โ Manage budgets & visualize spending.
9๏ธโฃ Image Classifier (ML) โ Classify objects using pre-trained models.
๐ E-Commerce Website โ Product catalog, cart, payment gateway.
๐ Advanced Projects
1๏ธโฃ1๏ธโฃ Blockchain Voting System โ Decentralized & tamper-proof elections.
1๏ธโฃ2๏ธโฃ Social Media Analytics Dashboard โ Analyze engagement, reach & sentiment.
1๏ธโฃ3๏ธโฃ AI Code Assistant โ Suggest code improvements or detect bugs.
1๏ธโฃ4๏ธโฃ IoT Smart Home App โ Control devices using sensors and Raspberry Pi.
1๏ธโฃ5๏ธโฃ AR/VR Simulation โ Build immersive learning or game experiences.
๐ก Tip: Build in public. Share your process on GitHub, LinkedIn & Twitter.
๐ฅ React โค๏ธ for more project ideas!
Inspire your next portfolio project โ from beginner to pro!
๐๏ธ Beginner-Friendly Projects
1๏ธโฃ To-Do List App โ Create tasks, mark as done, store in browser.
2๏ธโฃ Weather App โ Fetch live weather data using a public API.
3๏ธโฃ Unit Converter โ Convert currencies, length, or weight.
4๏ธโฃ Personal Portfolio Website โ Showcase skills, projects & resume.
5๏ธโฃ Calculator App โ Build a clean UI for basic math operations.
โ๏ธ Intermediate Projects
6๏ธโฃ Chatbot with AI โ Use NLP libraries to answer user queries.
7๏ธโฃ Stock Market Tracker โ Real-time graphs & stock performance.
8๏ธโฃ Expense Tracker โ Manage budgets & visualize spending.
9๏ธโฃ Image Classifier (ML) โ Classify objects using pre-trained models.
๐ E-Commerce Website โ Product catalog, cart, payment gateway.
๐ Advanced Projects
1๏ธโฃ1๏ธโฃ Blockchain Voting System โ Decentralized & tamper-proof elections.
1๏ธโฃ2๏ธโฃ Social Media Analytics Dashboard โ Analyze engagement, reach & sentiment.
1๏ธโฃ3๏ธโฃ AI Code Assistant โ Suggest code improvements or detect bugs.
1๏ธโฃ4๏ธโฃ IoT Smart Home App โ Control devices using sensors and Raspberry Pi.
1๏ธโฃ5๏ธโฃ AR/VR Simulation โ Build immersive learning or game experiences.
๐ก Tip: Build in public. Share your process on GitHub, LinkedIn & Twitter.
๐ฅ React โค๏ธ for more project ideas!
โค2
๐๐ฑ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ผ ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐ง๐ฒ๐ฐ๐ต ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ! ๐
Upgrade your skills and earn industry-recognized certificates โ 100% FREE!
โ Big Data Analytics โ https://pdlink.in/4nzRoza
โ AI & ML โ https://pdlink.in/401SWry
โ Cloud Computing โ https://pdlink.in/3U2sMkR
โ Cyber Security โ https://pdlink.in/4nzQaDQ
โ Other Tech Courses โ https://pdlink.in/4lIN673
๐ฏ Enroll Now & Get Certified for FREE
Upgrade your skills and earn industry-recognized certificates โ 100% FREE!
โ Big Data Analytics โ https://pdlink.in/4nzRoza
โ AI & ML โ https://pdlink.in/401SWry
โ Cloud Computing โ https://pdlink.in/3U2sMkR
โ Cyber Security โ https://pdlink.in/4nzQaDQ
โ Other Tech Courses โ https://pdlink.in/4lIN673
๐ฏ Enroll Now & Get Certified for FREE
JOINS
Definition
Joins in MySQL allow you to retrieve data from two or more tables based on a related column. They are used to combine rows from multiple tables.
Types of Joins
1. INNER JOIN:
- Returns rows where there is a match in both tables.
- Syntax:
- Example:
2. LEFT JOIN (OUTER JOIN):
- Returns all rows from the left table and matching rows from the right table. Non-matching rows have
- Example:
3. RIGHT JOIN (OUTER JOIN):
- Returns all rows from the right table and matching rows from the left table. Non-matching rows have
- Example:
4. FULL OUTER JOIN:
- Returns all rows from both tables, matching where possible. Not natively supported in MySQL, but can be simulated using
- Example:
5. CROSS JOIN:
- Returns the Cartesian product of both tables.
- Example:
Interview Questions
1. What is the difference between INNER JOIN and OUTER JOIN?
- INNER JOIN only includes rows with matches in both tables, while OUTER JOIN includes unmatched rows.
2. How can you simulate a FULL OUTER JOIN in MySQL?
- Use
3. What is a Cartesian product, and when does it occur?
- A Cartesian product occurs in a
Definition
Joins in MySQL allow you to retrieve data from two or more tables based on a related column. They are used to combine rows from multiple tables.
Types of Joins
1. INNER JOIN:
- Returns rows where there is a match in both tables.
- Syntax:
SELECT columns
FROM table1
INNER JOIN table2
ON table1.column = table2.column;
- Example:
SELECT employees.name, departments.name
FROM employees
INNER JOIN departments
ON employees.department_id = departments.id;
2. LEFT JOIN (OUTER JOIN):
- Returns all rows from the left table and matching rows from the right table. Non-matching rows have
NULL.- Example:
SELECT employees.name, departments.name
FROM employees
LEFT JOIN departments
ON employees.department_id = departments.id;
3. RIGHT JOIN (OUTER JOIN):
- Returns all rows from the right table and matching rows from the left table. Non-matching rows have
NULL.- Example:
SELECT employees.name, departments.name
FROM employees
RIGHT JOIN departments
ON employees.department_id = departments.id;
4. FULL OUTER JOIN:
- Returns all rows from both tables, matching where possible. Not natively supported in MySQL, but can be simulated using
UNION.- Example:
SELECT employees.name, departments.name
FROM employees
LEFT JOIN departments
ON employees.department_id = departments.id
UNION
SELECT employees.name, departments.name
FROM employees
RIGHT JOIN departments
ON employees.department_id = departments.id;
5. CROSS JOIN:
- Returns the Cartesian product of both tables.
- Example:
SELECT employees.name, departments.name
FROM employees
CROSS JOIN departments;
Interview Questions
1. What is the difference between INNER JOIN and OUTER JOIN?
- INNER JOIN only includes rows with matches in both tables, while OUTER JOIN includes unmatched rows.
2. How can you simulate a FULL OUTER JOIN in MySQL?
- Use
UNION of LEFT JOIN and RIGHT JOIN.3. What is a Cartesian product, and when does it occur?
- A Cartesian product occurs in a
CROSS JOIN or when no ON condition is specified, resulting in all possible row combinations.โค1
๐ง๐ผ๐ฝ ๐๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐ ๐๐ถ๐ฟ๐ถ๐ป๐ด ๐๐ฐ๐ฟ๐ผ๐๐ ๐๐ป๐ฑ๐ถ๐ฎ ๐
Multiple top MNCs are hiring for various roles across domains!
๐น Roles: Tech & Non-Tech
๐น Location: PAN India
๐น Qualification: Graduate / Post Graduate
๐น Salary: Competitive Packages
๐๐ฝ๐ฝ๐น๐ ๐ก๐ผ๐๐:-
https://bit.ly/4f5VAmj
Select your experience & Complete The Registration Process
Select the company name & apply for the role that matches you
Multiple top MNCs are hiring for various roles across domains!
๐น Roles: Tech & Non-Tech
๐น Location: PAN India
๐น Qualification: Graduate / Post Graduate
๐น Salary: Competitive Packages
๐๐ฝ๐ฝ๐น๐ ๐ก๐ผ๐๐:-
https://bit.ly/4f5VAmj
Select your experience & Complete The Registration Process
Select the company name & apply for the role that matches you
โค2
๐ฒ ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ต๐ฒ ๐ ๐ผ๐๐ ๐๐ป-๐๐ฒ๐บ๐ฎ๐ป๐ฑ ๐ง๐ฒ๐ฐ๐ต ๐ฆ๐ธ๐ถ๐น๐น๐๐
๐ Want to future-proof your career without spending a single rupee?๐ต
These 6 free online courses from top institutions like Google, Harvard, IBM, Stanford, and Cisco will help you master high-demand tech skills in 2025 โ from Data Analytics to Machine Learning๐๐งโ๐ป
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4fbDejW
Each course is beginner-friendly, comes with certification, and helps you build your resume or switch careersโ ๏ธ
๐ Want to future-proof your career without spending a single rupee?๐ต
These 6 free online courses from top institutions like Google, Harvard, IBM, Stanford, and Cisco will help you master high-demand tech skills in 2025 โ from Data Analytics to Machine Learning๐๐งโ๐ป
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4fbDejW
Each course is beginner-friendly, comes with certification, and helps you build your resume or switch careersโ ๏ธ
โค1
Creating a data science and machine learning project involves several steps, from defining the problem to deploying the model. Here is a general outline of how you can create a data science and ML project:
1. Define the Problem: Start by clearly defining the problem you want to solve. Understand the business context, the goals of the project, and what insights or predictions you aim to derive from the data.
2. Collect Data: Gather relevant data that will help you address the problem. This could involve collecting data from various sources, such as databases, APIs, CSV files, or web scraping.
3. Data Preprocessing: Clean and preprocess the data to make it suitable for analysis and modeling. This may involve handling missing values, encoding categorical variables, scaling features, and other data cleaning tasks.
4. Exploratory Data Analysis (EDA): Perform exploratory data analysis to understand the data better. Visualize the data, identify patterns, correlations, and outliers that may impact your analysis.
5. Feature Engineering: Create new features or transform existing features to improve the performance of your machine learning model. Feature engineering is crucial for building a successful ML model.
6. Model Selection: Choose the appropriate machine learning algorithm based on the problem you are trying to solve (classification, regression, clustering, etc.). Experiment with different models and hyperparameters to find the best-performing one.
7. Model Training: Split your data into training and testing sets and train your machine learning model on the training data. Evaluate the model's performance on the testing data using appropriate metrics.
8. Model Evaluation: Evaluate the performance of your model using metrics like accuracy, precision, recall, F1-score, ROC-AUC, etc. Make sure to analyze the results and iterate on your model if needed.
9. Deployment: Once you have a satisfactory model, deploy it into production. This could involve creating an API for real-time predictions, integrating it into a web application, or any other method of making your model accessible.
10. Monitoring and Maintenance: Monitor the performance of your deployed model and ensure that it continues to perform well over time. Update the model as needed based on new data or changes in the problem domain.
1. Define the Problem: Start by clearly defining the problem you want to solve. Understand the business context, the goals of the project, and what insights or predictions you aim to derive from the data.
2. Collect Data: Gather relevant data that will help you address the problem. This could involve collecting data from various sources, such as databases, APIs, CSV files, or web scraping.
3. Data Preprocessing: Clean and preprocess the data to make it suitable for analysis and modeling. This may involve handling missing values, encoding categorical variables, scaling features, and other data cleaning tasks.
4. Exploratory Data Analysis (EDA): Perform exploratory data analysis to understand the data better. Visualize the data, identify patterns, correlations, and outliers that may impact your analysis.
5. Feature Engineering: Create new features or transform existing features to improve the performance of your machine learning model. Feature engineering is crucial for building a successful ML model.
6. Model Selection: Choose the appropriate machine learning algorithm based on the problem you are trying to solve (classification, regression, clustering, etc.). Experiment with different models and hyperparameters to find the best-performing one.
7. Model Training: Split your data into training and testing sets and train your machine learning model on the training data. Evaluate the model's performance on the testing data using appropriate metrics.
8. Model Evaluation: Evaluate the performance of your model using metrics like accuracy, precision, recall, F1-score, ROC-AUC, etc. Make sure to analyze the results and iterate on your model if needed.
9. Deployment: Once you have a satisfactory model, deploy it into production. This could involve creating an API for real-time predictions, integrating it into a web application, or any other method of making your model accessible.
10. Monitoring and Maintenance: Monitor the performance of your deployed model and ensure that it continues to perform well over time. Update the model as needed based on new data or changes in the problem domain.
โค2
๐๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ - ๐ญ๐ฌ๐ฌ% ๐๐ฅ๐๐ ๐
Start learning industry-relevant data skills today at zero cost!
โ 100% FREE Certification
โ Learn Data Analysis, Excel, SQL, Power BI & more
โ Boost your resume with job-ready skills
๐ Perfect for Students, Freshers & Career Switchers
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4lp7hXQ
๐ Enroll Now & Get Certified
Start learning industry-relevant data skills today at zero cost!
โ 100% FREE Certification
โ Learn Data Analysis, Excel, SQL, Power BI & more
โ Boost your resume with job-ready skills
๐ Perfect for Students, Freshers & Career Switchers
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4lp7hXQ
๐ Enroll Now & Get Certified
โค1
One day or Day one. You decide.
Data Science edition.
๐ข๐ป๐ฒ ๐๐ฎ๐ : I will learn SQL.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Download mySQL Workbench.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will build my projects for my portfolio.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Look on Kaggle for a dataset to work on.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will master statistics.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Start the free Khan Academy Statistics and Probability course.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will learn to tell stories with data.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Install Tableau Public and create my first chart.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will become a Data Scientist.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Update my resume and apply to some Data Science job postings.
Data Science edition.
๐ข๐ป๐ฒ ๐๐ฎ๐ : I will learn SQL.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Download mySQL Workbench.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will build my projects for my portfolio.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Look on Kaggle for a dataset to work on.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will master statistics.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Start the free Khan Academy Statistics and Probability course.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will learn to tell stories with data.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Install Tableau Public and create my first chart.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will become a Data Scientist.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Update my resume and apply to some Data Science job postings.
โค1