Artificial Intelligence & ChatGPT Prompts
40.5K subscribers
667 photos
5 videos
319 files
561 links
๐Ÿ”“Unlock Your Coding Potential with ChatGPT
๐Ÿš€ Your Ultimate Guide to Ace Coding Interviews!
๐Ÿ’ป Coding tips, practice questions, and expert advice to land your dream tech job.


For Promotions: @love_data
Download Telegram
๐Ÿ๐ŸŽ๐ŸŽ+ ๐…๐‘๐„๐„ ๐‚๐ž๐ซ๐ญ๐ข๐Ÿ๐ข๐œ๐š๐ญ๐ข๐จ๐ง ๐‚๐จ๐ฎ๐ซ๐ฌ๐ž๐ฌ ๐Ÿ˜

- Data Analytics
- BigData
- Artificial Intelligence
- Cloud Computing
- Data Science
- Machine Learning
- Cyber Security

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 
 
https://pdlink.in/4dJ27Ta
 
Enroll For FREE & Get Certified ๐ŸŽ“
โœ… Learn New Skills FREE ๐Ÿ”ฐ

1. Web Development โž
โ—€๏ธ https://t.iss.one/webdevcoursefree

2. CSS โž
โ—€๏ธ https://css-tricks.com

3. JavaScript โž
โ—€๏ธ https://t.iss.one/javascript_courses

4. React โž
โ—€๏ธ https://react-tutorial.app

5. Data Engineering โž
โ—€๏ธ https://t.iss.one/sql_engineer

6. Data Science  โž
โ—€๏ธ https://t.iss.one/datasciencefun

7. Python โž
โ—€๏ธ https://pythontutorial.net

8. SQL โž
โ—€๏ธ  https://t.iss.one/sqlanalyst

9. Git and GitHub โž
โ—€๏ธ https://GitFluence.com

10. Blockchain โž
โ—€๏ธ https://t.iss.one/Bitcoin_Crypto_Web

11. Mongo DB โž
โ—€๏ธ https://mongodb.com

12. Node JS โž
โ—€๏ธ https://nodejsera.com

13. English Speaking โž
โ—€๏ธ https://t.iss.one/englishlearnerspro

14. C#โž
โ—€๏ธ https://learn.microsoft.com/en-us/training/paths/get-started-c-sharp-part-1/

15. Excelโž
โ—€๏ธ https://t.iss.one/excel_analyst

16. Generative AIโž
โ—€๏ธ https://t.iss.one/generativeai_gpt

17. Java
โ—€๏ธ https://t.iss.one/Java_Programming_Notes

18. Artificial Intelligence
โ—€๏ธ https://t.iss.one/machinelearning_deeplearning

19. Data Structure & Algorithms
โ—€๏ธ https://t.iss.one/dsabooks

20. Backend Development
โ—€๏ธ https://imp.i115008.net/rn2nyy

21. Python for AI
โ—€๏ธ https://deeplearning.ai/short-courses/ai-python-for-beginners/

Join @free4unow_backup for more free courses

Like for more โค๏ธ

ENJOY LEARNING๐Ÿ‘๐Ÿ‘
โค1
Q1: How would you analyze data to understand user connection patterns on a professional network?

Ans: I'd use graph databases like Neo4j for social network analysis. By analyzing connection patterns, I can identify influencers or isolated communities.

Q2: Describe a challenging data visualization you created to represent user engagement metrics.

Ans: I visualized multi-dimensional data showing user engagement across features, regions, and time using tools like D3.js, creating an interactive dashboard with drill-down capabilities.

Q3: How would you identify and target passive job seekers on LinkedIn?

Ans: I'd analyze user behavior patterns, like increased profile updates, frequent visits to job postings, or engagement with career-related content, to identify potential passive job seekers.

Q4: How do you measure the effectiveness of a new feature launched on LinkedIn?


Ans: I'd set up A/B tests, comparing user engagement metrics between those who have access to the new feature and a control group. I'd then analyze metrics like time spent, feature usage frequency, and overall platform engagement to measure effectiveness.
โค1
๐Ÿ“Š Data Analyst Roadmap (2025)

Master the Skills That Top Companies Are Hiring For!

๐Ÿ“ 1. Learn Excel / Google Sheets
Basic formulas & formatting
VLOOKUP, Pivot Tables, Charts
Data cleaning & conditional formatting

๐Ÿ“ 2. Master SQL
SELECT, WHERE, ORDER BY
JOINs (INNER, LEFT, RIGHT)
GROUP BY, HAVING, LIMIT
Subqueries, CTEs, Window Functions

๐Ÿ“ 3. Learn Data Visualization Tools
Power BI / Tableau (choose one)
Charts, filters, slicers
Dashboards & storytelling

๐Ÿ“ 4. Get Comfortable with Statistics
Mean, Median, Mode, Std Dev
Probability basics
A/B Testing, Hypothesis Testing
Correlation & Regression

๐Ÿ“ 5. Learn Python for Data Analysis (Optional but Powerful)
Pandas & NumPy for data handling
Seaborn, Matplotlib for visuals
Jupyter Notebooks for analysis

๐Ÿ“ 6. Data Cleaning & Wrangling
Handle missing values
Fix data types, remove duplicates
Text processing & date formatting

๐Ÿ“ 7. Understand Business Metrics
KPIs: Revenue, Churn, CAC, LTV
Think like a business analyst
Deliver actionable insights

๐Ÿ“ 8. Communication & Storytelling
Present insights with clarity
Simplify complex data
Speak the language of stakeholders

๐Ÿ“ 9. Version Control (Git & GitHub)
Track your projects
Build a data portfolio
Collaborate with the community

๐Ÿ“ 10. Interview & Resume Preparation
Excel, SQL, case-based questions
Mock interviews + real projects
Resume with measurable achievements

โœจ React โค๏ธ for more
โค1
If you want to Excel in Data Science and become an expert, master these essential concepts:

Core Data Science Skills:

โ€ข Python for Data Science โ€“ Pandas, NumPy, Matplotlib, Seaborn
โ€ข SQL for Data Extraction โ€“ SELECT, JOIN, GROUP BY, CTEs, Window Functions
โ€ข Data Cleaning & Preprocessing โ€“ Handling missing data, outliers, duplicates
โ€ข Exploratory Data Analysis (EDA) โ€“ Visualizing data trends

Machine Learning (ML):

โ€ข Supervised Learning โ€“ Linear Regression, Decision Trees, Random Forest
โ€ข Unsupervised Learning โ€“ Clustering, PCA, Anomaly Detection
โ€ข Model Evaluation โ€“ Cross-validation, Confusion Matrix, ROC-AUC
โ€ข Hyperparameter Tuning โ€“ Grid Search, Random Search

Deep Learning (DL):

โ€ข Neural Networks โ€“ TensorFlow, PyTorch, Keras
โ€ข CNNs & RNNs โ€“ Image & sequential data processing
โ€ข Transformers & LLMs โ€“ GPT, BERT, Stable Diffusion

Big Data & Cloud Computing:

โ€ข Hadoop & Spark โ€“ Handling large datasets
โ€ข AWS, GCP, Azure โ€“ Cloud-based data science solutions
โ€ข MLOps โ€“ Deploy models using Flask, FastAPI, Docker

Statistics & Mathematics for Data Science:

โ€ข Probability & Hypothesis Testing โ€“ P-values, T-tests, Chi-square
โ€ข Linear Algebra & Calculus โ€“ Matrices, Vectors, Derivatives
โ€ข Time Series Analysis โ€“ ARIMA, Prophet, LSTMs

Real-World Applications:

โ€ข Recommendation Systems โ€“ Personalized AI suggestions
โ€ข NLP (Natural Language Processing) โ€“ Sentiment Analysis, Chatbots
โ€ข AI-Powered Business Insights โ€“ Data-driven decision-making

React โค๏ธ for more
โค1
๐Ÿฐ ๐—•๐—ฒ๐˜€๐˜ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฆ๐—ค๐—Ÿ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€๐Ÿ˜

Want to break into Data Analytics?๐Ÿ’ซ

It all starts with SQL โ€” the language every data analyst needs to master. Whether youโ€™re analyzing trends, pulling business reports, or cleaning datasets, SQL is at the heart of it all๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/44oj5Ds

Perfect for students, freshers, job seekers, or anyone transitioning into techโœ…๏ธ
Future-Proof Skills for Data Analysts in 2025 & Beyond

1๏ธโƒฃ AI-Powered Analytics ๐Ÿค– Leverage AI and AutoML tools like ChatGPT, DataRobot, and H2O.ai to automate insights and decision-making.

2๏ธโƒฃ Generative AI for Data Analysis ๐Ÿง  Use AI for generating SQL queries, writing Python scripts, and automating data storytelling.

3๏ธโƒฃ Real-Time Data Processing โšก Learn streaming technologies like Apache Kafka and Apache Flink for real-time analytics.

4๏ธโƒฃ DataOps & MLOps ๐Ÿ”„ Understand how to deploy and maintain machine learning models and analytical workflows in production environments.

5๏ธโƒฃ Knowledge of Graph Databases ๐Ÿ“Š Work with Neo4j and Amazon Neptune to analyze relationships in complex datasets.

6๏ธโƒฃ Advanced Data Privacy & Ethics ๐Ÿ” Stay updated on GDPR, CCPA, and AI ethics to ensure responsible data handling.

7๏ธโƒฃ No-Code & Low-Code Analytics ๐Ÿ› ๏ธ Use platforms like Alteryx, Knime, and Google AutoML for rapid prototyping and automation.

8๏ธโƒฃ API & Web Scraping Skills ๐ŸŒ Extract real-time data using APIs and web scraping tools like BeautifulSoup and Selenium.

9๏ธโƒฃ Cross-Disciplinary Collaboration ๐Ÿค Work with product managers, engineers, and business leaders to drive data-driven strategies.

๐Ÿ”Ÿ Continuous Learning & Adaptability ๐Ÿš€ Stay ahead by learning new technologies, attending conferences, and networking with industry experts.

Like for detailed explanation โค๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค1
๐—ง๐—ฒ๐—ฐ๐—ต ๐—๐—ผ๐—ฏ๐˜€ ๐—œ๐—ป ๐—ง๐—ผ๐—ฝ ๐—–๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€ | Across India๐Ÿ˜

Companies Hiring:- Google, Microsoft, Cognizant, Infosys, TCS & Many More

Roles:- Data Analysts ,Data Scientits ,Software Engineers & Other roles

๐—”๐—ฝ๐—ฝ๐—น๐˜† ๐—ก๐—ผ๐˜„๐Ÿ‘‡:-

https://bit.ly/44qMX2k

Select your experience & Complete The Registration Process

โœ… Start applying to jobs that fit your profile and boost your career growth!
SQL is one of the core languages used in data science, powering everything from quick data retrieval to complex deep dive analysis. Whether you're a seasoned data scientist or just starting out, mastering SQL can boost your ability to analyze data, create robust pipelines, and deliver actionable insights.

Letโ€™s dive into a comprehensive guide on SQL for Data Science!

I have broken it down into three key sections to help you:

๐Ÿญ. ๐—ฆ๐—ค๐—Ÿ ๐—–๐—ผ๐—ป๐—ฐ๐—ฒ๐—ฝ๐˜๐˜€:
Get a handle on the essentials -> SELECT statements, filtering, aggregations, joins, window functions, and more.

๐Ÿฎ. ๐—ฆ๐—ค๐—Ÿ ๐—ถ๐—ป ๐——๐—ฎ๐˜†-๐˜๐—ผ-๐——๐—ฎ๐˜† ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ:
See how SQL fits into the daily data science workflow. From quick data queries and deep-dive analysis to building pipelines and dashboards, SQL is really useful for data scientists, especially for product data scientists.

๐Ÿฏ. ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฆ๐—ค๐—Ÿ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐˜€:
Learn what interviewers look for in terms of technical skills, design and engineering expertise, communication abilities, and the importance of speed and accuracy.
โค1
๐—ง๐—ผ๐—ฝ ๐Ÿฑ ๐—ช๐—ฒ๐—ฏ๐˜€๐—ถ๐˜๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—๐—ฎ๐˜ƒ๐—ฎ๐—ฆ๐—ฐ๐—ฟ๐—ถ๐—ฝ๐˜ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Learning JavaScript doesnโ€™t have to be boring anymore!๐Ÿ’ซ

If endless tutorials make your eyes glaze over, weโ€™ve got just the thing โ€” these super fun & interactive platforms turn learning JavaScript into a game๐Ÿ‘จโ€๐Ÿ’ป

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3T4yYbP

Perfect for daily practice, weekend sprints, or anyone who learns better with hands-on interaction!9โœ…๏ธ
SQL Basics for Data Analysts

SQL (Structured Query Language) is used to retrieve, manipulate, and analyze data stored in databases.

1๏ธโƒฃ Understanding Databases & Tables

Databases store structured data in tables.

Tables contain rows (records) and columns (fields).

Each column has a specific data type (INTEGER, VARCHAR, DATE, etc.).

2๏ธโƒฃ Basic SQL Commands

Let's start with some fundamental queries:

๐Ÿ”น SELECT โ€“ Retrieve Data

SELECT * FROM employees; -- Fetch all columns from 'employees' table SELECT name, salary FROM employees; -- Fetch specific columns 

๐Ÿ”น WHERE โ€“ Filter Data

SELECT * FROM employees WHERE department = 'Sales'; -- Filter by department SELECT * FROM employees WHERE salary > 50000; -- Filter by salary 


๐Ÿ”น ORDER BY โ€“ Sort Data

SELECT * FROM employees ORDER BY salary DESC; -- Sort by salary (highest first) SELECT name, hire_date FROM employees ORDER BY hire_date ASC; -- Sort by hire date (oldest first) 


๐Ÿ”น LIMIT โ€“ Restrict Number of Results

SELECT * FROM employees LIMIT 5; -- Fetch only 5 rows SELECT * FROM employees WHERE department = 'HR' LIMIT 10; -- Fetch first 10 HR employees 


๐Ÿ”น DISTINCT โ€“ Remove Duplicates

SELECT DISTINCT department FROM employees; -- Show unique departments 


Mini Task for You: Try to write an SQL query to fetch the top 3 highest-paid employees from an "employees" table.

You can find free SQL Resources here
๐Ÿ‘‡๐Ÿ‘‡
https://t.iss.one/mysqldata

Like this post if you want me to continue covering all the topics! ๐Ÿ‘โค๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)

#sql
โค1
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ + ๐—Ÿ๐—ถ๐—ป๐—ธ๐—ฒ๐—ฑ๐—œ๐—ป ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—˜๐˜€๐˜€๐—ฒ๐—ป๐˜๐—ถ๐—ฎ๐—น ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ๐Ÿ˜

Ready to upgrade your career without spending a dime?โœจ๏ธ

From Generative AI to Project Management, get trained by global tech leaders and earn certificates that carry real value on your resume and LinkedIn profile!๐Ÿ“ฒ๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/469RCGK

Designed to equip you with in-demand skills and industry-recognised certifications๐Ÿ“œโœ…๏ธ
Data Analyst Interview Questions with Answers

Q1: How would you handle real-time data streaming for analyzing user listening patterns?

Ans:  I'd use platforms like Apache Kafka for real-time data ingestion. Using Python, I'd process this stream to identify real-time patterns and store aggregated data for further analysis.

Q2: Describe a situation where you had to use time series analysis to forecast a trend. 

Ans:  I analyzed monthly active users to forecast future growth. Using Python's statsmodels, I applied ARIMA modeling to the time series data and provided a forecast for the next six months.

Q3: How would you segment and analyze user behavior based on their music preferences? 

Ans: I'd cluster users based on their listening history using unsupervised machine learning techniques like K-means clustering. This would help in creating personalized playlists or recommendations.

Q4: How do you handle missing or incomplete data in user listening logs? 


Ans: I'd use imputation methods based on the nature of the missing data. For instance, if a user's listening time is missing, I might impute it based on their average listening time or use collaborative filtering methods to estimate it based on similar users.
โค2
๐—ง๐—ผ๐—ฝ ๐Ÿฒ ๐—™๐—ฅ๐—˜๐—˜ ๐—ฌ๐—ผ๐˜‚๐—ง๐˜‚๐—ฏ๐—ฒ ๐—ฃ๐—น๐—ฎ๐˜†๐—น๐—ถ๐˜€๐˜๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—ฆ๐—ค๐—Ÿ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฆ๐—ฐ๐—ฟ๐—ฎ๐˜๐—ฐ๐—ต (๐—ฃ๐—ฒ๐—ฟ๐—ณ๐—ฒ๐—ฐ๐˜ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ๐˜€)๐Ÿ˜

Want to master SQL without spending a rupee?๐Ÿ’ฐ

You donโ€™t need premium subscriptions or paid courses โ€” these free YouTube playlists are all you need to understand databases, write queries, and even crack job interviews with confidence๐Ÿ‘จโ€๐ŸŽ“๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3HREv30

Hit play and grow at your own pace!
โœ…๏ธ
โค1
Core data science concepts you should know:

๐Ÿ”ข 1. Statistics & Probability

Descriptive statistics: Mean, median, mode, standard deviation, variance

Inferential statistics: Hypothesis testing, confidence intervals, p-values, t-tests, ANOVA

Probability distributions: Normal, Binomial, Poisson, Uniform

Bayes' Theorem

Central Limit Theorem


๐Ÿ“Š 2. Data Wrangling & Cleaning

Handling missing values

Outlier detection and treatment

Data transformation (scaling, encoding, normalization)

Feature engineering

Dealing with imbalanced data


๐Ÿ“ˆ 3. Exploratory Data Analysis (EDA)

Univariate, bivariate, and multivariate analysis

Correlation and covariance

Data visualization tools: Matplotlib, Seaborn, Plotly

Insights generation through visual storytelling


๐Ÿค– 4. Machine Learning Fundamentals

Supervised Learning: Linear regression, logistic regression, decision trees, SVM, k-NN

Unsupervised Learning: K-means, hierarchical clustering, PCA

Model evaluation: Accuracy, precision, recall, F1-score, ROC-AUC

Cross-validation and overfitting/underfitting

Bias-variance tradeoff


๐Ÿง  5. Deep Learning (Basics)

Neural networks: Perceptron, MLP

Activation functions (ReLU, Sigmoid, Tanh)

Backpropagation

Gradient descent and learning rate

CNNs and RNNs (intro level)


๐Ÿ—ƒ๏ธ 6. Data Structures & Algorithms (DSA)

Arrays, lists, dictionaries, sets

Sorting and searching algorithms

Time and space complexity (Big-O notation)

Common problems: string manipulation, matrix operations, recursion


๐Ÿ’พ 7. SQL & Databases

SELECT, WHERE, GROUP BY, HAVING

JOINS (inner, left, right, full)

Subqueries and CTEs

Window functions

Indexing and normalization


๐Ÿ“ฆ 8. Tools & Libraries

Python: pandas, NumPy, scikit-learn, TensorFlow, PyTorch

R: dplyr, ggplot2, caret

Jupyter Notebooks for experimentation

Git and GitHub for version control


๐Ÿงช 9. A/B Testing & Experimentation

Control vs. treatment group

Hypothesis formulation

Significance level, p-value interpretation

Power analysis


๐ŸŒ 10. Business Acumen & Storytelling

Translating data insights into business value

Crafting narratives with data

Building dashboards (Power BI, Tableau)

Knowing KPIs and business metrics

React โค๏ธ for more
โค2
๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—™๐—ฅ๐—˜๐—˜ ๐——๐—ฒ๐—บ๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐—œ๐—ป ๐—ฃ๐˜‚๐—ป๐—ฒ ๐Ÿ˜

๐Ÿ“Š โ€œData Analystโ€ is one of the hottest careers in tech โ€” and guess what? NO coding needed!

Learn Data Analytics in Pune with Hands-on Training, Industry Projects, and 100% Placement Assistance.

๐—›๐—ถ๐—ด๐—ต๐—น๐—ถ๐—ด๐—ต๐˜๐—ฒ๐˜€ :-

- 100% Placement Assistance
- 500+ Hiring Partners 
- Weekly Hiring Drives 

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:-

https://pdlink.in/45p4GrC

Location:- Acciojob Skill Centre ,Baner, Pune
โค1
Essential Topics to Master Data Analytics Interviews: ๐Ÿš€

SQL:
1. Foundations
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables

2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries

3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)

Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages

2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets

3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)

Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting

2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)

3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards

Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)

2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX

3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes

Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.

Show some โค๏ธ if you're ready to elevate your data analytics journey! ๐Ÿ“Š

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค1
Forwarded from Data Analytics
๐Ÿฑ ๐—™๐—ฅ๐—˜๐—˜ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ๐˜€ ๐—ฏ๐˜† ๐—›๐—ฎ๐—ฟ๐˜ƒ๐—ฎ๐—ฟ๐—ฑ, ๐—œ๐—•๐— , ๐—จ๐—ฑ๐—ฎ๐—ฐ๐—ถ๐˜๐˜† & ๐— ๐—ผ๐—ฟ๐—ฒ๐Ÿ˜

Looking to learn Python from scratchโ€”without spending a rupee? ๐Ÿ’ป

Offered by trusted platforms like Harvard University, IBM, Udacity, freeCodeCamp, and OpenClassrooms, each course is self-paced, easy to follow, and includes a certificate of completion๐Ÿ”ฅ๐Ÿ‘จโ€๐ŸŽ“

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3HNeyBQ

Kickstart your careerโœ…๏ธ
Top 10 machine Learning algorithms

1. Linear Regression: Linear regression is a simple and commonly used algorithm for predicting a continuous target variable based on one or more input features. It assumes a linear relationship between the input variables and the output.

2. Logistic Regression: Logistic regression is used for binary classification problems where the target variable has two classes. It estimates the probability that a given input belongs to a particular class.

3. Decision Trees: Decision trees are a popular algorithm for both classification and regression tasks. They partition the feature space into regions based on the input variables and make predictions by following a tree-like structure.

4. Random Forest: Random forest is an ensemble learning method that combines multiple decision trees to improve prediction accuracy. It reduces overfitting and provides robust predictions by averaging the results of individual trees.

5. Support Vector Machines (SVM): SVM is a powerful algorithm for both classification and regression tasks. It finds the optimal hyperplane that separates different classes in the feature space, maximizing the margin between classes.

6. K-Nearest Neighbors (KNN): KNN is a simple and intuitive algorithm for classification and regression tasks. It makes predictions based on the similarity of input data points to their k nearest neighbors in the training set.

7. Naive Bayes: Naive Bayes is a probabilistic algorithm based on Bayes' theorem that is commonly used for classification tasks. It assumes that the features are conditionally independent given the class label.

8. Neural Networks: Neural networks are a versatile and powerful class of algorithms inspired by the human brain. They consist of interconnected layers of neurons that learn complex patterns in the data through training.

9. Gradient Boosting Machines (GBM): GBM is an ensemble learning method that builds a series of weak learners sequentially to improve prediction accuracy. It combines multiple decision trees in a boosting framework to minimize prediction errors.

10. Principal Component Analysis (PCA): PCA is a dimensionality reduction technique that transforms high-dimensional data into a lower-dimensional space while preserving as much variance as possible. It helps in visualizing and understanding the underlying structure of the data.

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
โค2
๐ŸŽ“ ๐—จ๐—ฝ๐—ด๐—ฟ๐—ฎ๐—ฑ๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—œ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ

Access 1000+ free courses in top domains like:
๐Ÿ”น AI & GenAI
๐Ÿ”น Data Science
๐Ÿ”น Digital Marketing
๐Ÿ”น UI/UX Design & more

โœ… Learn from top faculty & industry experts
โœ… Get industry-recognized certificates
โœ… Boost your CV with valuable credentials

๐Ÿ“Œ Start learning today โ€” itโ€™s 100% free!

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 
 
https://pdlink.in/4dJ27Ta
 
Enroll For FREE & Get Certified ๐ŸŽ“
โค2