Forwarded from Data Science & Machine Learning
๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ ๐๐ถ๐๐ต ๐๐ฎ๐ฟ๐๐ฎ๐ฟ๐ฑ ๐จ๐ป๐ถ๐๐ฒ๐ฟ๐๐ถ๐๐๐
๐ฏ Want to break into Data Science without spending a single rupee?๐ฐ
Harvard University is offering a goldmine of free courses that make top-tier education accessible to anyone, anywhere๐จโ๐ปโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3HxOgTW
These courses are designed by Ivy League experts and are trusted by thousands globallyโ ๏ธ
๐ฏ Want to break into Data Science without spending a single rupee?๐ฐ
Harvard University is offering a goldmine of free courses that make top-tier education accessible to anyone, anywhere๐จโ๐ปโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3HxOgTW
These courses are designed by Ivy League experts and are trusted by thousands globallyโ ๏ธ
๐จ ๐๐๐๐ฒ๐ป๐๐ถ๐ผ๐ป ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ ๐๐ถ๐๐ต ๐ฎ+ ๐ฌ๐ฒ๐ฎ๐ฟ๐ ๐ผ๐ณ ๐๐
๐ฝ๐ฒ๐ฟ๐ถ๐ฒ๐ป๐ฐ๐ฒ
Are you from a Circuit Branch with coding experience and based in Bengaluru, Chennai, Hyderabad, or Pune?
๐ก Itโs time to upgrade to Agentic AI โ the future of intelligent systems.
Join Interview Kickstartโs 4-Week Agentic AI Bootcamp
๐จโ๐ผ Learn from Microsoft Engineers
๐ ๏ธ Build a production-ready AI app
๐ Get certified & upskill in real-world GenAI
๐ ๐๐ฝ๐ฝ๐น๐ ๐ป๐ผ๐ โ ๐๐ถ๐บ๐ถ๐๐ฒ๐ฑ ๐๐น๐ผ๐๐ ๐ผ๐ป๐น๐!
https://pdlink.in/4dQYCKw
๐ Only for 2+ Yrs Exp professionals ready to lead the AI shift.
Are you from a Circuit Branch with coding experience and based in Bengaluru, Chennai, Hyderabad, or Pune?
๐ก Itโs time to upgrade to Agentic AI โ the future of intelligent systems.
Join Interview Kickstartโs 4-Week Agentic AI Bootcamp
๐จโ๐ผ Learn from Microsoft Engineers
๐ ๏ธ Build a production-ready AI app
๐ Get certified & upskill in real-world GenAI
๐ ๐๐ฝ๐ฝ๐น๐ ๐ป๐ผ๐ โ ๐๐ถ๐บ๐ถ๐๐ฒ๐ฑ ๐๐น๐ผ๐๐ ๐ผ๐ป๐น๐!
https://pdlink.in/4dQYCKw
๐ Only for 2+ Yrs Exp professionals ready to lead the AI shift.
Python Roadmap for 2025: Complete Guide
1. Python Fundamentals
1.1 Variables, constants, and comments.
1.2 Data types: int, float, str, bool, complex.
1.3 Input and output (input(), print(), formatted strings).
1.4 Python syntax: Indentation and code structure.
2. Operators
2.1 Arithmetic: +, -, *, /, %, //, **.
2.2 Comparison: ==, !=, <, >, <=, >=.
2.3 Logical: and, or, not.
2.4 Bitwise: &, |, ^, ~, <<, >>.
2.5 Identity: is, is not.
2.6 Membership: in, not in.
3. Control Flow
3.1 Conditional statements: if, elif, else.
3.2 Loops: for, while.
3.3 Loop control: break, continue, pass.
4. Data Structures
4.1 Lists: Indexing, slicing, methods (append(), pop(), sort(), etc.).
4.2 Tuples: Immutability, packing/unpacking.
4.3 Dictionaries: Key-value pairs, methods (get(), items(), etc.).
4.4 Sets: Unique elements, set operations (union, intersection).
4.5 Strings: Immutability, methods (split(), strip(), replace()).
5. Functions
5.1 Defining functions with def.
5.2 Arguments: Positional, keyword, default, *args, **kwargs.
5.3 Anonymous functions (lambda).
5.4 Recursion.
6. Modules and Packages
6.1 Importing: import, from ... import.
6.2 Standard libraries: math, os, sys, random, datetime, time.
6.3 Installing external libraries with pip.
7. File Handling
7.1 Open and close files (open(), close()).
7.2 Read and write (read(), write(), readlines()).
7.3 Using context managers (with open(...)).
8. Object-Oriented Programming (OOP)
8.1 Classes and objects.
8.2 Methods and attributes.
8.3 Constructor (init).
8.4 Inheritance, polymorphism, encapsulation.
8.5 Special methods (str, repr, etc.).
9. Error and Exception Handling
9.1 try, except, else, finally.
9.2 Raising exceptions (raise).
9.3 Custom exceptions.
10. Comprehensions
10.1 List comprehensions.
10.2 Dictionary comprehensions.
10.3 Set comprehensions.
11. Iterators and Generators
11.1 Creating iterators using iter() and next().
11.2 Generators with yield.
11.3 Generator expressions.
12. Decorators and Closures
12.1 Functions as first-class citizens.
12.2 Nested functions.
12.3 Closures.
12.4 Creating and applying decorators.
13. Advanced Topics
13.1 Context managers (with statement).
13.2 Multithreading and multiprocessing.
13.3 Asynchronous programming with async and await.
13.4 Python's Global Interpreter Lock (GIL).
14. Python Internals
14.1 Mutable vs immutable objects.
14.2 Memory management and garbage collection.
14.3 Python's name == "main" mechanism.
15. Libraries and Frameworks
15.1 Data Science: NumPy, Pandas, Matplotlib, Seaborn.
15.2 Web Development: Flask, Django, FastAPI.
15.3 Testing: unittest, pytest.
15.4 APIs: requests, http.client.
15.5 Automation: selenium, os.
15.6 Machine Learning: scikit-learn, TensorFlow, PyTorch.
16. Tools and Best Practices
16.1 Debugging: pdb, breakpoints.
16.2 Code style: PEP 8 guidelines.
16.3 Virtual environments: venv.
16.4 Version control: Git + GitHub.
๐ Python Interview ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐
https://t.iss.one/dsabooks
๐ ๐ฃ๐ฟ๐ฒ๐บ๐ถ๐๐บ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ : https://topmate.io/coding/914624
๐ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ: https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z
Join What's app channel for jobs updates: t.iss.one/getjobss
1. Python Fundamentals
1.1 Variables, constants, and comments.
1.2 Data types: int, float, str, bool, complex.
1.3 Input and output (input(), print(), formatted strings).
1.4 Python syntax: Indentation and code structure.
2. Operators
2.1 Arithmetic: +, -, *, /, %, //, **.
2.2 Comparison: ==, !=, <, >, <=, >=.
2.3 Logical: and, or, not.
2.4 Bitwise: &, |, ^, ~, <<, >>.
2.5 Identity: is, is not.
2.6 Membership: in, not in.
3. Control Flow
3.1 Conditional statements: if, elif, else.
3.2 Loops: for, while.
3.3 Loop control: break, continue, pass.
4. Data Structures
4.1 Lists: Indexing, slicing, methods (append(), pop(), sort(), etc.).
4.2 Tuples: Immutability, packing/unpacking.
4.3 Dictionaries: Key-value pairs, methods (get(), items(), etc.).
4.4 Sets: Unique elements, set operations (union, intersection).
4.5 Strings: Immutability, methods (split(), strip(), replace()).
5. Functions
5.1 Defining functions with def.
5.2 Arguments: Positional, keyword, default, *args, **kwargs.
5.3 Anonymous functions (lambda).
5.4 Recursion.
6. Modules and Packages
6.1 Importing: import, from ... import.
6.2 Standard libraries: math, os, sys, random, datetime, time.
6.3 Installing external libraries with pip.
7. File Handling
7.1 Open and close files (open(), close()).
7.2 Read and write (read(), write(), readlines()).
7.3 Using context managers (with open(...)).
8. Object-Oriented Programming (OOP)
8.1 Classes and objects.
8.2 Methods and attributes.
8.3 Constructor (init).
8.4 Inheritance, polymorphism, encapsulation.
8.5 Special methods (str, repr, etc.).
9. Error and Exception Handling
9.1 try, except, else, finally.
9.2 Raising exceptions (raise).
9.3 Custom exceptions.
10. Comprehensions
10.1 List comprehensions.
10.2 Dictionary comprehensions.
10.3 Set comprehensions.
11. Iterators and Generators
11.1 Creating iterators using iter() and next().
11.2 Generators with yield.
11.3 Generator expressions.
12. Decorators and Closures
12.1 Functions as first-class citizens.
12.2 Nested functions.
12.3 Closures.
12.4 Creating and applying decorators.
13. Advanced Topics
13.1 Context managers (with statement).
13.2 Multithreading and multiprocessing.
13.3 Asynchronous programming with async and await.
13.4 Python's Global Interpreter Lock (GIL).
14. Python Internals
14.1 Mutable vs immutable objects.
14.2 Memory management and garbage collection.
14.3 Python's name == "main" mechanism.
15. Libraries and Frameworks
15.1 Data Science: NumPy, Pandas, Matplotlib, Seaborn.
15.2 Web Development: Flask, Django, FastAPI.
15.3 Testing: unittest, pytest.
15.4 APIs: requests, http.client.
15.5 Automation: selenium, os.
15.6 Machine Learning: scikit-learn, TensorFlow, PyTorch.
16. Tools and Best Practices
16.1 Debugging: pdb, breakpoints.
16.2 Code style: PEP 8 guidelines.
16.3 Virtual environments: venv.
16.4 Version control: Git + GitHub.
๐ Python Interview ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐
https://t.iss.one/dsabooks
๐ ๐ฃ๐ฟ๐ฒ๐บ๐ถ๐๐บ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ : https://topmate.io/coding/914624
๐ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ: https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z
Join What's app channel for jobs updates: t.iss.one/getjobss
โค1
5 Algorithms you must know as a data scientist ๐ฉโ๐ป ๐งโ๐ป
1. Dimensionality Reduction
- PCA, t-SNE, LDA
2. Regression models
- Linesr regression, Kernel-based regression models, Lasso Regression, Ridge regression, Elastic-net regression
3. Classification models
- Binary classification- Logistic regression, SVM
- Multiclass classification- One versus one, one versus many
- Multilabel classification
4. Clustering models
- K Means clustering, Hierarchical clustering, DBSCAN, BIRCH models
5. Decision tree based models
- CART model, ensemble models(XGBoost, LightGBM, CatBoost)
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ๐๐
1. Dimensionality Reduction
- PCA, t-SNE, LDA
2. Regression models
- Linesr regression, Kernel-based regression models, Lasso Regression, Ridge regression, Elastic-net regression
3. Classification models
- Binary classification- Logistic regression, SVM
- Multiclass classification- One versus one, one versus many
- Multilabel classification
4. Clustering models
- K Means clustering, Hierarchical clustering, DBSCAN, BIRCH models
5. Decision tree based models
- CART model, ensemble models(XGBoost, LightGBM, CatBoost)
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ๐๐
โค1
๐ณ ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐จ๐ฝ๐ด๐ฟ๐ฎ๐ฑ๐ฒ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ ๐ฎ๐ป๐ฑ ๐ฆ๐๐ฎ๐ป๐ฑ ๐ข๐๐๐
๐ Want to Make Your Resume Stand Out in 2025?โจ๏ธ
If youโre aiming to boost your chances in job interviews or want to upgrade your resume with powerful, in-demand skills โ start with these 7 free online courses๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3SJ91OV
Empower yourself and take your career to the next level! โ
๐ Want to Make Your Resume Stand Out in 2025?โจ๏ธ
If youโre aiming to boost your chances in job interviews or want to upgrade your resume with powerful, in-demand skills โ start with these 7 free online courses๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3SJ91OV
Empower yourself and take your career to the next level! โ
๐ฐ DevOps Roadmap for Beginners 2025
โโโ ๐ง What is DevOps? Principles & Culture
โโโ ๐งช Mini Task: Set up Local CI Pipeline with Shell Scripts
โโโ โ๏ธ Linux Basics: Commands, Shell Scripting
โโโ ๐ Version Control: Git, GitHub, GitLab
โโโ ๐งช Mini Task: Automate Deployment via GitHub Actions
โโโ ๐ฆ Package Managers & Artifact Repositories (npm, pip, DockerHub)
โโโ ๐ณ Docker Essentials: Images, Containers, Volumes, Networks
โโโ ๐งช Mini Project: Dockerize a MERN App
โโโ โ๏ธ CI/CD Concepts & Tools (Jenkins, GitHub Actions)
โโโ ๐งช Mini Project: CI/CD Pipeline for React App
โโโ ๐งฉ Infrastructure as Code: Terraform / Ansible Basics
โโโ ๐ Monitoring & Logging: Prometheus, Grafana, ELK Stack
โโโ ๐ Secrets Management & Security Basics (Vault, .env)
โโโ ๐ Web Servers: Nginx, Apache (Reverse Proxy, Load Balancer)
โโโ โ๏ธ Cloud Providers: AWS (EC2, S3, IAM), GCP, Azure Overview
React with โฅ๏ธ if you want me to explain each topic in detail
#devops
โโโ ๐ง What is DevOps? Principles & Culture
โโโ ๐งช Mini Task: Set up Local CI Pipeline with Shell Scripts
โโโ โ๏ธ Linux Basics: Commands, Shell Scripting
โโโ ๐ Version Control: Git, GitHub, GitLab
โโโ ๐งช Mini Task: Automate Deployment via GitHub Actions
โโโ ๐ฆ Package Managers & Artifact Repositories (npm, pip, DockerHub)
โโโ ๐ณ Docker Essentials: Images, Containers, Volumes, Networks
โโโ ๐งช Mini Project: Dockerize a MERN App
โโโ โ๏ธ CI/CD Concepts & Tools (Jenkins, GitHub Actions)
โโโ ๐งช Mini Project: CI/CD Pipeline for React App
โโโ ๐งฉ Infrastructure as Code: Terraform / Ansible Basics
โโโ ๐ Monitoring & Logging: Prometheus, Grafana, ELK Stack
โโโ ๐ Secrets Management & Security Basics (Vault, .env)
โโโ ๐ Web Servers: Nginx, Apache (Reverse Proxy, Load Balancer)
โโโ โ๏ธ Cloud Providers: AWS (EC2, S3, IAM), GCP, Azure Overview
React with โฅ๏ธ if you want me to explain each topic in detail
#devops
โค4
๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ฅ๐๐ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ฐ๐น๐ฎ๐๐ ๐
4 Steps to Kickstart Your Career in Data Science
Master Essential Tools: Get started with Python, SQL, and machine learning fundamentals.
Create a Job-Ready Portfolio: Learn how to showcase your skills to recruiters.
Eligibility :- Students,Freshers & Woking Professionals
๐๐๐ ๐ข๐ฌ๐ญ๐๐ซ ๐ ๐จ๐ซ ๐ ๐๐๐ ๐:-
https://pdlink.in/45kGSVL
(Limited Slots ..HurryUp๐โโ๏ธ )
๐๐๐ญ๐ & ๐๐ข๐ฆ๐:- June 13 2025, at 7 PM
4 Steps to Kickstart Your Career in Data Science
Master Essential Tools: Get started with Python, SQL, and machine learning fundamentals.
Create a Job-Ready Portfolio: Learn how to showcase your skills to recruiters.
Eligibility :- Students,Freshers & Woking Professionals
๐๐๐ ๐ข๐ฌ๐ญ๐๐ซ ๐ ๐จ๐ซ ๐ ๐๐๐ ๐:-
https://pdlink.in/45kGSVL
(Limited Slots ..HurryUp๐โโ๏ธ )
๐๐๐ญ๐ & ๐๐ข๐ฆ๐:- June 13 2025, at 7 PM
Top 20 Web Development Technologies ๐
1. ๐จ JavaScript โ 98% usage
2. ๐ต TypeScript โ 78% adoption
3. ๐ข Node.js โ 75% backend choice
4. โ๏ธ React โ 70% frontend framework
5. ๐ ฐ๏ธ Angular โ 55% enterprise use
6. ๐ Vue.js โ 49% growing popularity
7. ๐ Python โ 48% for full-stack
8. ๐ Ruby on Rails โ 45% rapid development
9. ๐ PHP โ 43% widespread use
10. โ Java โ 40% enterprise solutions
11. ๐ฆ Rust โ 38% performance-critical apps
12. ๐ฏ Dart โ 35% with Flutter for web
13. ๐ท GraphQL โ 33% API queries
14. ๐ MongoDB โ 30% NoSQL database
15. ๐ณ Docker โ 28% containerization
16. โ๏ธ AWS โ 25% cloud services
17. ๐ถ Svelte โ 22% compile-time framework
18. ๐ท Next.js โ 20% React framework
19. ๐ฃ Blazor โ 18% .NET web apps
20. ๐ข Deno โ 15% secure runtime
1. ๐จ JavaScript โ 98% usage
2. ๐ต TypeScript โ 78% adoption
3. ๐ข Node.js โ 75% backend choice
4. โ๏ธ React โ 70% frontend framework
5. ๐ ฐ๏ธ Angular โ 55% enterprise use
6. ๐ Vue.js โ 49% growing popularity
7. ๐ Python โ 48% for full-stack
8. ๐ Ruby on Rails โ 45% rapid development
9. ๐ PHP โ 43% widespread use
10. โ Java โ 40% enterprise solutions
11. ๐ฆ Rust โ 38% performance-critical apps
12. ๐ฏ Dart โ 35% with Flutter for web
13. ๐ท GraphQL โ 33% API queries
14. ๐ MongoDB โ 30% NoSQL database
15. ๐ณ Docker โ 28% containerization
16. โ๏ธ AWS โ 25% cloud services
17. ๐ถ Svelte โ 22% compile-time framework
18. ๐ท Next.js โ 20% React framework
19. ๐ฃ Blazor โ 18% .NET web apps
20. ๐ข Deno โ 15% secure runtime
โค2
๐ฒ ๐๐ฟ๐ฒ๐ฒ ๐ฃ๐น๐ฎ๐๐ณ๐ผ๐ฟ๐บ๐ ๐๐ผ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐๐
๐ฐ๐ฒ๐น, ๐ฆ๐ค๐ & ๐ฃ๐ผ๐๐ฒ๐ฟ ๐๐๐
๐กWant to master Excel, SQL, and Power BI โ without spending a rupee? Yes, itโs possible!๐จโ๐ป
๐ These free, beginner-friendly resources are perfect for anyone looking to build hands-on, job-ready skills that top companies like Accenture, EY, and Infosys look for in data professionals๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3SPh8JQ
These platforms offer structured tutorials, real challenges, and guided projectsโ ๏ธ
๐กWant to master Excel, SQL, and Power BI โ without spending a rupee? Yes, itโs possible!๐จโ๐ป
๐ These free, beginner-friendly resources are perfect for anyone looking to build hands-on, job-ready skills that top companies like Accenture, EY, and Infosys look for in data professionals๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3SPh8JQ
These platforms offer structured tutorials, real challenges, and guided projectsโ ๏ธ
Master Javascript :
The JavaScript Tree ๐
|
|โโ Variables
| โโโ var
| โโโ let
| โโโ const
|
|โโ Data Types
| โโโ String
| โโโ Number
| โโโ Boolean
| โโโ Object
| โโโ Array
| โโโ Null
| โโโ Undefined
|
|โโ Operators
| โโโ Arithmetic
| โโโ Assignment
| โโโ Comparison
| โโโ Logical
| โโโ Unary
| โโโ Ternary (Conditional)
||โโ Control Flow
| โโโ if statement
| โโโ else statement
| โโโ else if statement
| โโโ switch statement
| โโโ for loop
| โโโ while loop
| โโโ do-while loop
|
|โโ Functions
| โโโ Function declaration
| โโโ Function expression
| โโโ Arrow function
| โโโ IIFE (Immediately Invoked Function Expression)
|
|โโ Scope
| โโโ Global scope
| โโโ Local scope
| โโโ Block scope
| โโโ Lexical scope
||โโ Arrays
| โโโ Array methods
| | โโโ push()
| | โโโ pop()
| | โโโ shift()
| | โโโ unshift()
| | โโโ splice()
| | โโโ slice()
| | โโโ concat()
| โโโ Array iteration
| โโโ forEach()
| โโโ map()
| โโโ filter()
| โโโ reduce()|
|โโ Objects
| โโโ Object properties
| | โโโ Dot notation
| | โโโ Bracket notation
| โโโ Object methods
| | โโโ Object.keys()
| | โโโ Object.values()
| | โโโ Object.entries()
| โโโ Object destructuring
||โโ Promises
| โโโ Promise states
| | โโโ Pending
| | โโโ Fulfilled
| | โโโ Rejected
| โโโ Promise methods
| | โโโ then()
| | โโโ catch()
| | โโโ finally()
| โโโ Promise.all()
|
|โโ Asynchronous JavaScript
| โโโ Callbacks
| โโโ Promises
| โโโ Async/Await
|
|โโ Error Handling
| โโโ try...catch statement
| โโโ throw statement
|
|โโ JSON (JavaScript Object Notation)
||โโ Modules
| โโโ import
| โโโ export
|
|โโ DOM Manipulation
| โโโ Selecting elements
| โโโ Modifying elements
| โโโ Creating elements
|
|โโ Events
| โโโ Event listeners
| โโโ Event propagation
| โโโ Event delegation
|
|โโ AJAX (Asynchronous JavaScript and XML)
|
|โโ Fetch API
||โโ ES6+ Features
| โโโ Template literals
| โโโ Destructuring assignment
| โโโ Spread/rest operator
| โโโ Arrow functions
| โโโ Classes
| โโโ let and const
| โโโ Default parameters
| โโโ Modules
| โโโ Promises
|
|โโ Web APIs
| โโโ Local Storage
| โโโ Session Storage
| โโโ Web Storage API
|
|โโ Libraries and Frameworks
| โโโ React
| โโโ Angular
| โโโ Vue.js
||โโ Debugging
| โโโ Console.log()
| โโโ Breakpoints
| โโโ DevTools
|
|โโ Others
| โโโ Closures
| โโโ Callbacks
| โโโ Prototypes
| โโโ this keyword
| โโโ Hoisting
| โโโ Strict mode
|
| END __
The JavaScript Tree ๐
|
|โโ Variables
| โโโ var
| โโโ let
| โโโ const
|
|โโ Data Types
| โโโ String
| โโโ Number
| โโโ Boolean
| โโโ Object
| โโโ Array
| โโโ Null
| โโโ Undefined
|
|โโ Operators
| โโโ Arithmetic
| โโโ Assignment
| โโโ Comparison
| โโโ Logical
| โโโ Unary
| โโโ Ternary (Conditional)
||โโ Control Flow
| โโโ if statement
| โโโ else statement
| โโโ else if statement
| โโโ switch statement
| โโโ for loop
| โโโ while loop
| โโโ do-while loop
|
|โโ Functions
| โโโ Function declaration
| โโโ Function expression
| โโโ Arrow function
| โโโ IIFE (Immediately Invoked Function Expression)
|
|โโ Scope
| โโโ Global scope
| โโโ Local scope
| โโโ Block scope
| โโโ Lexical scope
||โโ Arrays
| โโโ Array methods
| | โโโ push()
| | โโโ pop()
| | โโโ shift()
| | โโโ unshift()
| | โโโ splice()
| | โโโ slice()
| | โโโ concat()
| โโโ Array iteration
| โโโ forEach()
| โโโ map()
| โโโ filter()
| โโโ reduce()|
|โโ Objects
| โโโ Object properties
| | โโโ Dot notation
| | โโโ Bracket notation
| โโโ Object methods
| | โโโ Object.keys()
| | โโโ Object.values()
| | โโโ Object.entries()
| โโโ Object destructuring
||โโ Promises
| โโโ Promise states
| | โโโ Pending
| | โโโ Fulfilled
| | โโโ Rejected
| โโโ Promise methods
| | โโโ then()
| | โโโ catch()
| | โโโ finally()
| โโโ Promise.all()
|
|โโ Asynchronous JavaScript
| โโโ Callbacks
| โโโ Promises
| โโโ Async/Await
|
|โโ Error Handling
| โโโ try...catch statement
| โโโ throw statement
|
|โโ JSON (JavaScript Object Notation)
||โโ Modules
| โโโ import
| โโโ export
|
|โโ DOM Manipulation
| โโโ Selecting elements
| โโโ Modifying elements
| โโโ Creating elements
|
|โโ Events
| โโโ Event listeners
| โโโ Event propagation
| โโโ Event delegation
|
|โโ AJAX (Asynchronous JavaScript and XML)
|
|โโ Fetch API
||โโ ES6+ Features
| โโโ Template literals
| โโโ Destructuring assignment
| โโโ Spread/rest operator
| โโโ Arrow functions
| โโโ Classes
| โโโ let and const
| โโโ Default parameters
| โโโ Modules
| โโโ Promises
|
|โโ Web APIs
| โโโ Local Storage
| โโโ Session Storage
| โโโ Web Storage API
|
|โโ Libraries and Frameworks
| โโโ React
| โโโ Angular
| โโโ Vue.js
||โโ Debugging
| โโโ Console.log()
| โโโ Breakpoints
| โโโ DevTools
|
|โโ Others
| โโโ Closures
| โโโ Callbacks
| โโโ Prototypes
| โโโ this keyword
| โโโ Hoisting
| โโโ Strict mode
|
| END __
โค2
๐ญ๐ฌ๐ฌ๐ฌ+ ๐๐ฟ๐ฒ๐ฒ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฒ๐ฑ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ฏ๐ ๐๐ป๐ณ๐ผ๐๐๐ โ ๐๐ฒ๐ฎ๐ฟ๐ป, ๐๐ฟ๐ผ๐, ๐ฆ๐๐ฐ๐ฐ๐ฒ๐ฒ๐ฑ!๐
๐ Looking to upgrade your skills without spending a rupee?๐ฐ
Hereโs your golden opportunity to unlock 1,000+ certified online courses across technology, business, communication, leadership, soft skills, and much more โ all absolutely FREE on Infosys Springboard!๐ฅ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/43UcmQ7
Save this blog, sign up, and start your upskilling journey today!โ ๏ธ
๐ Looking to upgrade your skills without spending a rupee?๐ฐ
Hereโs your golden opportunity to unlock 1,000+ certified online courses across technology, business, communication, leadership, soft skills, and much more โ all absolutely FREE on Infosys Springboard!๐ฅ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/43UcmQ7
Save this blog, sign up, and start your upskilling journey today!โ ๏ธ
โค1
DSA (Data Structures and Algorithms) Essential Topics for Interviews
1๏ธโฃ Arrays and Strings
Basic operations (insert, delete, update)
Two-pointer technique
Sliding window
Prefix sum
Kadaneโs algorithm
Subarray problems
2๏ธโฃ Linked List
Singly & Doubly Linked List
Reverse a linked list
Detect loop (Floydโs Cycle)
Merge two sorted lists
Intersection of linked lists
3๏ธโฃ Stack & Queue
Stack using array or linked list
Queue and Circular Queue
Monotonic Stack/Queue
LRU Cache (LinkedHashMap/Deque)
Infix to Postfix conversion
4๏ธโฃ Hashing
HashMap, HashSet
Frequency counting
Two Sum problem
Group Anagrams
Longest Consecutive Sequence
5๏ธโฃ Recursion & Backtracking
Base cases and recursive calls
Subsets, permutations
N-Queens problem
Sudoku solver
Word search
6๏ธโฃ Trees & Binary Trees
Traversals (Inorder, Preorder, Postorder)
Height and Diameter
Balanced Binary Tree
Lowest Common Ancestor (LCA)
Serialize & Deserialize Tree
7๏ธโฃ Binary Search Trees (BST)
Search, Insert, Delete
Validate BST
Kth smallest/largest element
Convert BST to DLL
8๏ธโฃ Heaps & Priority Queues
Min Heap / Max Heap
Heapify
Top K elements
Merge K sorted lists
Median in a stream
9๏ธโฃ Graphs
Representations (adjacency list/matrix)
DFS, BFS
Cycle detection (directed & undirected)
Topological Sort
Dijkstraโs & Bellman-Ford algorithm
Union-Find (Disjoint Set)
10๏ธโฃ Dynamic Programming (DP)
0/1 Knapsack
Longest Common Subsequence
Matrix Chain Multiplication
DP on subsequences
Memoization vs Tabulation
11๏ธโฃ Greedy Algorithms
Activity selection
Huffman coding
Fractional knapsack
Job scheduling
12๏ธโฃ Tries
Insert and search a word
Word search
Auto-complete feature
13๏ธโฃ Bit Manipulation
XOR, AND, OR basics
Check if power of 2
Single Number problem
Count set bits
Coding Interview Resources: https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
ENJOY LEARNING ๐๐
1๏ธโฃ Arrays and Strings
Basic operations (insert, delete, update)
Two-pointer technique
Sliding window
Prefix sum
Kadaneโs algorithm
Subarray problems
2๏ธโฃ Linked List
Singly & Doubly Linked List
Reverse a linked list
Detect loop (Floydโs Cycle)
Merge two sorted lists
Intersection of linked lists
3๏ธโฃ Stack & Queue
Stack using array or linked list
Queue and Circular Queue
Monotonic Stack/Queue
LRU Cache (LinkedHashMap/Deque)
Infix to Postfix conversion
4๏ธโฃ Hashing
HashMap, HashSet
Frequency counting
Two Sum problem
Group Anagrams
Longest Consecutive Sequence
5๏ธโฃ Recursion & Backtracking
Base cases and recursive calls
Subsets, permutations
N-Queens problem
Sudoku solver
Word search
6๏ธโฃ Trees & Binary Trees
Traversals (Inorder, Preorder, Postorder)
Height and Diameter
Balanced Binary Tree
Lowest Common Ancestor (LCA)
Serialize & Deserialize Tree
7๏ธโฃ Binary Search Trees (BST)
Search, Insert, Delete
Validate BST
Kth smallest/largest element
Convert BST to DLL
8๏ธโฃ Heaps & Priority Queues
Min Heap / Max Heap
Heapify
Top K elements
Merge K sorted lists
Median in a stream
9๏ธโฃ Graphs
Representations (adjacency list/matrix)
DFS, BFS
Cycle detection (directed & undirected)
Topological Sort
Dijkstraโs & Bellman-Ford algorithm
Union-Find (Disjoint Set)
10๏ธโฃ Dynamic Programming (DP)
0/1 Knapsack
Longest Common Subsequence
Matrix Chain Multiplication
DP on subsequences
Memoization vs Tabulation
11๏ธโฃ Greedy Algorithms
Activity selection
Huffman coding
Fractional knapsack
Job scheduling
12๏ธโฃ Tries
Insert and search a word
Word search
Auto-complete feature
13๏ธโฃ Bit Manipulation
XOR, AND, OR basics
Check if power of 2
Single Number problem
Count set bits
Coding Interview Resources: https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
ENJOY LEARNING ๐๐
โค1
๐๐ฅ๐๐ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐๐ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ฐ๐น๐ฎ๐๐ ๐๐ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐โ๐ ๐ฆ๐ฒ๐ป๐ถ๐ผ๐ฟ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐๐
Become an AI-Powered Engineer In 2025
๐๐ถ๐ด๐ต๐น๐ถ๐ด๐ต๐๐:-
- Build Real-World Agentic AI Systems
- Led by a Microsoft AI Specialist
- Live Q&A Sessions
๐๐น๐ถ๐ด๐ถ๐ฏ๐ถ๐น๐ถ๐๐:- Experienced Professionals
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/4n0gkPW
Date & Time:- 18 June 2025,7 PM IST
๐โโ๏ธLimited Slots โ Register Now!
Become an AI-Powered Engineer In 2025
๐๐ถ๐ด๐ต๐น๐ถ๐ด๐ต๐๐:-
- Build Real-World Agentic AI Systems
- Led by a Microsoft AI Specialist
- Live Q&A Sessions
๐๐น๐ถ๐ด๐ถ๐ฏ๐ถ๐น๐ถ๐๐:- Experienced Professionals
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/4n0gkPW
Date & Time:- 18 June 2025,7 PM IST
๐โโ๏ธLimited Slots โ Register Now!
๐ Data Science Essentials: What Every Data Enthusiast Should Know!
1๏ธโฃ Understand Your Data
Always start with data exploration. Check for missing values, outliers, and overall distribution to avoid misleading insights.
2๏ธโฃ Data Cleaning Matters
Noisy data leads to inaccurate predictions. Standardize formats, remove duplicates, and handle missing data effectively.
3๏ธโฃ Use Descriptive & Inferential Statistics
Mean, median, mode, variance, standard deviation, correlation, hypothesis testingโthese form the backbone of data interpretation.
4๏ธโฃ Master Data Visualization
Bar charts, histograms, scatter plots, and heatmaps make insights more accessible and actionable.
5๏ธโฃ Learn SQL for Efficient Data Extraction
Write optimized queries (
6๏ธโฃ Build Strong Programming Skills
Python (Pandas, NumPy, Scikit-learn) and R are essential for data manipulation and analysis.
7๏ธโฃ Understand Machine Learning Basics
Know key algorithmsโlinear regression, decision trees, random forests, and clusteringโto develop predictive models.
8๏ธโฃ Learn Dashboarding & Storytelling
Power BI and Tableau help convert raw data into actionable insights for stakeholders.
๐ฅ Pro Tip: Always cross-check your results with different techniques to ensure accuracy!
Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
DOUBLE TAP โค๏ธ IF YOU FOUND THIS HELPFUL!
1๏ธโฃ Understand Your Data
Always start with data exploration. Check for missing values, outliers, and overall distribution to avoid misleading insights.
2๏ธโฃ Data Cleaning Matters
Noisy data leads to inaccurate predictions. Standardize formats, remove duplicates, and handle missing data effectively.
3๏ธโฃ Use Descriptive & Inferential Statistics
Mean, median, mode, variance, standard deviation, correlation, hypothesis testingโthese form the backbone of data interpretation.
4๏ธโฃ Master Data Visualization
Bar charts, histograms, scatter plots, and heatmaps make insights more accessible and actionable.
5๏ธโฃ Learn SQL for Efficient Data Extraction
Write optimized queries (
SELECT, JOIN, GROUP BY, WHERE) to retrieve relevant data from databases.6๏ธโฃ Build Strong Programming Skills
Python (Pandas, NumPy, Scikit-learn) and R are essential for data manipulation and analysis.
7๏ธโฃ Understand Machine Learning Basics
Know key algorithmsโlinear regression, decision trees, random forests, and clusteringโto develop predictive models.
8๏ธโฃ Learn Dashboarding & Storytelling
Power BI and Tableau help convert raw data into actionable insights for stakeholders.
๐ฅ Pro Tip: Always cross-check your results with different techniques to ensure accuracy!
Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
DOUBLE TAP โค๏ธ IF YOU FOUND THIS HELPFUL!
โค1
Creating a data science and machine learning project involves several steps, from defining the problem to deploying the model. Here is a general outline of how you can create a data science and ML project:
1. Define the Problem: Start by clearly defining the problem you want to solve. Understand the business context, the goals of the project, and what insights or predictions you aim to derive from the data.
2. Collect Data: Gather relevant data that will help you address the problem. This could involve collecting data from various sources, such as databases, APIs, CSV files, or web scraping.
3. Data Preprocessing: Clean and preprocess the data to make it suitable for analysis and modeling. This may involve handling missing values, encoding categorical variables, scaling features, and other data cleaning tasks.
4. Exploratory Data Analysis (EDA): Perform exploratory data analysis to understand the data better. Visualize the data, identify patterns, correlations, and outliers that may impact your analysis.
5. Feature Engineering: Create new features or transform existing features to improve the performance of your machine learning model. Feature engineering is crucial for building a successful ML model.
6. Model Selection: Choose the appropriate machine learning algorithm based on the problem you are trying to solve (classification, regression, clustering, etc.). Experiment with different models and hyperparameters to find the best-performing one.
7. Model Training: Split your data into training and testing sets and train your machine learning model on the training data. Evaluate the model's performance on the testing data using appropriate metrics.
8. Model Evaluation: Evaluate the performance of your model using metrics like accuracy, precision, recall, F1-score, ROC-AUC, etc. Make sure to analyze the results and iterate on your model if needed.
9. Deployment: Once you have a satisfactory model, deploy it into production. This could involve creating an API for real-time predictions, integrating it into a web application, or any other method of making your model accessible.
10. Monitoring and Maintenance: Monitor the performance of your deployed model and ensure that it continues to perform well over time. Update the model as needed based on new data or changes in the problem domain.
1. Define the Problem: Start by clearly defining the problem you want to solve. Understand the business context, the goals of the project, and what insights or predictions you aim to derive from the data.
2. Collect Data: Gather relevant data that will help you address the problem. This could involve collecting data from various sources, such as databases, APIs, CSV files, or web scraping.
3. Data Preprocessing: Clean and preprocess the data to make it suitable for analysis and modeling. This may involve handling missing values, encoding categorical variables, scaling features, and other data cleaning tasks.
4. Exploratory Data Analysis (EDA): Perform exploratory data analysis to understand the data better. Visualize the data, identify patterns, correlations, and outliers that may impact your analysis.
5. Feature Engineering: Create new features or transform existing features to improve the performance of your machine learning model. Feature engineering is crucial for building a successful ML model.
6. Model Selection: Choose the appropriate machine learning algorithm based on the problem you are trying to solve (classification, regression, clustering, etc.). Experiment with different models and hyperparameters to find the best-performing one.
7. Model Training: Split your data into training and testing sets and train your machine learning model on the training data. Evaluate the model's performance on the testing data using appropriate metrics.
8. Model Evaluation: Evaluate the performance of your model using metrics like accuracy, precision, recall, F1-score, ROC-AUC, etc. Make sure to analyze the results and iterate on your model if needed.
9. Deployment: Once you have a satisfactory model, deploy it into production. This could involve creating an API for real-time predictions, integrating it into a web application, or any other method of making your model accessible.
10. Monitoring and Maintenance: Monitor the performance of your deployed model and ensure that it continues to perform well over time. Update the model as needed based on new data or changes in the problem domain.
โค1