Artificial Intelligence & ChatGPT Prompts
40.6K subscribers
667 photos
5 videos
319 files
561 links
๐Ÿ”“Unlock Your Coding Potential with ChatGPT
๐Ÿš€ Your Ultimate Guide to Ace Coding Interviews!
๐Ÿ’ป Coding tips, practice questions, and expert advice to land your dream tech job.


For Promotions: @love_data
Download Telegram
๐Ÿ”— Mastering LLMs and Generative AI
โค1
๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ ๐˜„๐—ถ๐˜๐—ต ๐—›๐—ฎ๐—ฟ๐˜ƒ๐—ฎ๐—ฟ๐—ฑ ๐—จ๐—ป๐—ถ๐˜ƒ๐—ฒ๐—ฟ๐˜€๐—ถ๐˜๐˜†๐Ÿ˜

๐ŸŽฏ Want to break into Data Science without spending a single rupee?๐Ÿ’ฐ

Harvard University is offering a goldmine of free courses that make top-tier education accessible to anyone, anywhere๐Ÿ‘จโ€๐Ÿ’ปโœจ๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3HxOgTW

These courses are designed by Ivy League experts and are trusted by thousands globallyโœ…๏ธ
๐Ÿšจ ๐—”๐˜๐˜๐—ฒ๐—ป๐˜๐—ถ๐—ผ๐—ป ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐˜€ ๐˜„๐—ถ๐˜๐—ต ๐Ÿฎ+ ๐—ฌ๐—ฒ๐—ฎ๐—ฟ๐˜€ ๐—ผ๐—ณ ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ

Are you from a Circuit Branch with coding experience and based in Bengaluru, Chennai, Hyderabad, or Pune?

๐Ÿ’ก Itโ€™s time to upgrade to Agentic AI โ€“ the future of intelligent systems.
Join Interview Kickstartโ€™s 4-Week Agentic AI Bootcamp
๐Ÿ‘จโ€๐Ÿ’ผ Learn from Microsoft Engineers
๐Ÿ› ๏ธ Build a production-ready AI app
๐Ÿ“œ Get certified & upskill in real-world GenAI

๐Ÿ‘‰ ๐—”๐—ฝ๐—ฝ๐—น๐˜† ๐—ป๐—ผ๐˜„ โ€“ ๐—Ÿ๐—ถ๐—บ๐—ถ๐˜๐—ฒ๐—ฑ ๐˜€๐—น๐—ผ๐˜๐˜€ ๐—ผ๐—ป๐—น๐˜†!

https://pdlink.in/4dQYCKw

๐Ÿš€ Only for 2+ Yrs Exp professionals ready to lead the AI shift.
Python Roadmap for 2025: Complete Guide

1. Python Fundamentals
1.1 Variables, constants, and comments.
1.2 Data types: int, float, str, bool, complex.
1.3 Input and output (input(), print(), formatted strings).
1.4 Python syntax: Indentation and code structure.

2. Operators
2.1 Arithmetic: +, -, *, /, %, //, **.
2.2 Comparison: ==, !=, <, >, <=, >=.
2.3 Logical: and, or, not.
2.4 Bitwise: &, |, ^, ~, <<, >>.
2.5 Identity: is, is not.
2.6 Membership: in, not in.

3. Control Flow
3.1 Conditional statements: if, elif, else.
3.2 Loops: for, while.
3.3 Loop control: break, continue, pass.

4. Data Structures
4.1 Lists: Indexing, slicing, methods (append(), pop(), sort(), etc.).
4.2 Tuples: Immutability, packing/unpacking.
4.3 Dictionaries: Key-value pairs, methods (get(), items(), etc.).
4.4 Sets: Unique elements, set operations (union, intersection).
4.5 Strings: Immutability, methods (split(), strip(), replace()).

5. Functions
5.1 Defining functions with def.
5.2 Arguments: Positional, keyword, default, *args, **kwargs.
5.3 Anonymous functions (lambda).
5.4 Recursion.

6. Modules and Packages
6.1 Importing: import, from ... import.
6.2 Standard libraries: math, os, sys, random, datetime, time.
6.3 Installing external libraries with pip.

7. File Handling
7.1 Open and close files (open(), close()).
7.2 Read and write (read(), write(), readlines()).
7.3 Using context managers (with open(...)).

8. Object-Oriented Programming (OOP)
8.1 Classes and objects.
8.2 Methods and attributes.
8.3 Constructor (init).
8.4 Inheritance, polymorphism, encapsulation.
8.5 Special methods (str, repr, etc.).

9. Error and Exception Handling
9.1 try, except, else, finally.
9.2 Raising exceptions (raise).
9.3 Custom exceptions.

10. Comprehensions
10.1 List comprehensions.
10.2 Dictionary comprehensions.
10.3 Set comprehensions.

11. Iterators and Generators
11.1 Creating iterators using iter() and next().
11.2 Generators with yield.
11.3 Generator expressions.

12. Decorators and Closures
12.1 Functions as first-class citizens.
12.2 Nested functions.
12.3 Closures.
12.4 Creating and applying decorators.

13. Advanced Topics
13.1 Context managers (with statement).
13.2 Multithreading and multiprocessing.
13.3 Asynchronous programming with async and await.
13.4 Python's Global Interpreter Lock (GIL).

14. Python Internals
14.1 Mutable vs immutable objects.
14.2 Memory management and garbage collection.
14.3 Python's name == "main" mechanism.

15. Libraries and Frameworks
15.1 Data Science: NumPy, Pandas, Matplotlib, Seaborn.
15.2 Web Development: Flask, Django, FastAPI.
15.3 Testing: unittest, pytest.
15.4 APIs: requests, http.client.
15.5 Automation: selenium, os.
15.6 Machine Learning: scikit-learn, TensorFlow, PyTorch.

16. Tools and Best Practices
16.1 Debugging: pdb, breakpoints.

16.2 Code style: PEP 8 guidelines.
16.3 Virtual environments: venv.
16.4 Version control: Git + GitHub.

๐Ÿ‘‡ Python Interview ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€
https://t.iss.one/dsabooks

๐Ÿ“˜ ๐—ฃ๐—ฟ๐—ฒ๐—บ๐—ถ๐˜‚๐—บ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ : https://topmate.io/coding/914624

๐Ÿ“™ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ: https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z

Join What's app channel for jobs updates: t.iss.one/getjobss
โค1
CLEAN CODE TIPS
โค2
5 Algorithms you must know as a data scientist ๐Ÿ‘ฉโ€๐Ÿ’ป ๐Ÿง‘โ€๐Ÿ’ป

1. Dimensionality Reduction
- PCA, t-SNE, LDA

2. Regression models
- Linesr regression, Kernel-based regression models, Lasso Regression, Ridge regression, Elastic-net regression

3. Classification models
- Binary classification- Logistic regression, SVM
- Multiclass classification- One versus one, one versus many
- Multilabel classification

4. Clustering models
- K Means clustering, Hierarchical clustering, DBSCAN, BIRCH models

5. Decision tree based models
- CART model, ensemble models(XGBoost, LightGBM, CatBoost)

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
โค1
๐Ÿณ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—จ๐—ฝ๐—ด๐—ฟ๐—ฎ๐—ฑ๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐˜๐—ฎ๐—ป๐—ฑ ๐—ข๐˜‚๐˜๐Ÿ˜

๐Ÿš€ Want to Make Your Resume Stand Out in 2025?โœจ๏ธ

If youโ€™re aiming to boost your chances in job interviews or want to upgrade your resume with powerful, in-demand skills โ€” start with these 7 free online courses๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3SJ91OV

Empower yourself and take your career to the next level! โœ…
๐Ÿ”ฐ DevOps Roadmap for Beginners 2025

โ”œโ”€โ”€ ๐Ÿง  What is DevOps? Principles & Culture
โ”œโ”€โ”€ ๐Ÿงช Mini Task: Set up Local CI Pipeline with Shell Scripts
โ”œโ”€โ”€ โš™๏ธ Linux Basics: Commands, Shell Scripting
โ”œโ”€โ”€ ๐Ÿ“ Version Control: Git, GitHub, GitLab
โ”œโ”€โ”€ ๐Ÿงช Mini Task: Automate Deployment via GitHub Actions
โ”œโ”€โ”€ ๐Ÿ“ฆ Package Managers & Artifact Repositories (npm, pip, DockerHub)
โ”œโ”€โ”€ ๐Ÿณ Docker Essentials: Images, Containers, Volumes, Networks
โ”œโ”€โ”€ ๐Ÿงช Mini Project: Dockerize a MERN App
โ”œโ”€โ”€ โ˜๏ธ CI/CD Concepts & Tools (Jenkins, GitHub Actions)
โ”œโ”€โ”€ ๐Ÿงช Mini Project: CI/CD Pipeline for React App
โ”œโ”€โ”€ ๐Ÿงฉ Infrastructure as Code: Terraform / Ansible Basics
โ”œโ”€โ”€ ๐Ÿ“ˆ Monitoring & Logging: Prometheus, Grafana, ELK Stack
โ”œโ”€โ”€ ๐Ÿ” Secrets Management & Security Basics (Vault, .env)
โ”œโ”€โ”€ ๐ŸŒ Web Servers: Nginx, Apache (Reverse Proxy, Load Balancer)
โ”œโ”€โ”€ โ˜๏ธ Cloud Providers: AWS (EC2, S3, IAM), GCP, Azure Overview

React with โ™ฅ๏ธ if you want me to explain each topic in detail

#devops
โค4
๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—™๐—ฅ๐—˜๐—˜ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐Ÿ˜ 

4 Steps to Kickstart Your Career in Data Science

Master Essential Tools: Get started with Python, SQL, and machine learning fundamentals.

Create a Job-Ready Portfolio: Learn how to showcase your skills to recruiters.

Eligibility :- Students,Freshers & Woking Professionals 

๐‘๐ž๐ ๐ข๐ฌ๐ญ๐ž๐ซ ๐…๐จ๐ซ ๐…๐‘๐„๐„ ๐Ÿ‘‡:-

https://pdlink.in/45kGSVL

(Limited Slots ..HurryUp๐Ÿƒโ€โ™‚๏ธ

๐ƒ๐š๐ญ๐ž & ๐“๐ข๐ฆ๐ž:-  June 13 2025, at 7 PM
Top 20 Web Development Technologies ๐ŸŒ

1. ๐ŸŸจ JavaScript โ€” 98% usage

2. ๐Ÿ”ต TypeScript โ€” 78% adoption

3. ๐ŸŸข Node.js โ€” 75% backend choice

4. โš›๏ธ React โ€” 70% frontend framework

5. ๐Ÿ…ฐ๏ธ Angular โ€” 55% enterprise use

6. ๐Ÿ’š Vue.js โ€” 49% growing popularity

7. ๐Ÿ Python โ€” 48% for full-stack

8. ๐Ÿ’Ž Ruby on Rails โ€” 45% rapid development

9. ๐Ÿ˜ PHP โ€” 43% widespread use

10. โ˜• Java โ€” 40% enterprise solutions

11. ๐Ÿฆ€ Rust โ€” 38% performance-critical apps

12. ๐ŸŽฏ Dart โ€” 35% with Flutter for web

13. ๐Ÿ”ท GraphQL โ€” 33% API queries

14. ๐Ÿƒ MongoDB โ€” 30% NoSQL database

15. ๐Ÿณ Docker โ€” 28% containerization

16. โ˜๏ธ AWS โ€” 25% cloud services

17. ๐Ÿ”ถ Svelte โ€” 22% compile-time framework

18. ๐Ÿ”ท Next.js โ€” 20% React framework

19. ๐ŸŸฃ Blazor โ€” 18% .NET web apps

20. ๐ŸŸข Deno โ€” 15% secure runtime
โค2
๐Ÿฒ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฃ๐—น๐—ฎ๐˜๐—ณ๐—ผ๐—ฟ๐—บ๐˜€ ๐˜๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—˜๐˜…๐—ฐ๐—ฒ๐—น, ๐—ฆ๐—ค๐—Ÿ & ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—•๐—œ๐Ÿ˜

๐Ÿ’กWant to master Excel, SQL, and Power BI โ€” without spending a rupee? Yes, itโ€™s possible!๐Ÿ‘จโ€๐Ÿ’ป

๐Ÿ“Š These free, beginner-friendly resources are perfect for anyone looking to build hands-on, job-ready skills that top companies like Accenture, EY, and Infosys look for in data professionals๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3SPh8JQ

These platforms offer structured tutorials, real challenges, and guided projectsโœ…๏ธ
Master Javascript :

The JavaScript Tree ๐Ÿ‘‡
|
|โ”€โ”€ Variables
| โ”œโ”€โ”€ var
| โ”œโ”€โ”€ let
| โ””โ”€โ”€ const
|
|โ”€โ”€ Data Types
| โ”œโ”€โ”€ String
| โ”œโ”€โ”€ Number
| โ”œโ”€โ”€ Boolean
| โ”œโ”€โ”€ Object
| โ”œโ”€โ”€ Array
| โ”œโ”€โ”€ Null
| โ””โ”€โ”€ Undefined
|
|โ”€โ”€ Operators
| โ”œโ”€โ”€ Arithmetic
| โ”œโ”€โ”€ Assignment
| โ”œโ”€โ”€ Comparison
| โ”œโ”€โ”€ Logical
| โ”œโ”€โ”€ Unary
| โ””โ”€โ”€ Ternary (Conditional)
||โ”€โ”€ Control Flow
| โ”œโ”€โ”€ if statement
| โ”œโ”€โ”€ else statement
| โ”œโ”€โ”€ else if statement
| โ”œโ”€โ”€ switch statement
| โ”œโ”€โ”€ for loop
| โ”œโ”€โ”€ while loop
| โ””โ”€โ”€ do-while loop
|
|โ”€โ”€ Functions
| โ”œโ”€โ”€ Function declaration
| โ”œโ”€โ”€ Function expression
| โ”œโ”€โ”€ Arrow function
| โ””โ”€โ”€ IIFE (Immediately Invoked Function Expression)
|
|โ”€โ”€ Scope
| โ”œโ”€โ”€ Global scope
| โ”œโ”€โ”€ Local scope
| โ”œโ”€โ”€ Block scope
| โ””โ”€โ”€ Lexical scope
||โ”€โ”€ Arrays
| โ”œโ”€โ”€ Array methods
| | โ”œโ”€โ”€ push()
| | โ”œโ”€โ”€ pop()
| | โ”œโ”€โ”€ shift()
| | โ”œโ”€โ”€ unshift()
| | โ”œโ”€โ”€ splice()
| | โ”œโ”€โ”€ slice()
| | โ””โ”€โ”€ concat()
| โ””โ”€โ”€ Array iteration
| โ”œโ”€โ”€ forEach()
| โ”œโ”€โ”€ map()
| โ”œโ”€โ”€ filter()
| โ””โ”€โ”€ reduce()|
|โ”€โ”€ Objects
| โ”œโ”€โ”€ Object properties
| | โ”œโ”€โ”€ Dot notation
| | โ””โ”€โ”€ Bracket notation
| โ”œโ”€โ”€ Object methods
| | โ”œโ”€โ”€ Object.keys()
| | โ”œโ”€โ”€ Object.values()
| | โ””โ”€โ”€ Object.entries()
| โ””โ”€โ”€ Object destructuring
||โ”€โ”€ Promises
| โ”œโ”€โ”€ Promise states
| | โ”œโ”€โ”€ Pending
| | โ”œโ”€โ”€ Fulfilled
| | โ””โ”€โ”€ Rejected
| โ”œโ”€โ”€ Promise methods
| | โ”œโ”€โ”€ then()
| | โ”œโ”€โ”€ catch()
| | โ””โ”€โ”€ finally()
| โ””โ”€โ”€ Promise.all()
|
|โ”€โ”€ Asynchronous JavaScript
| โ”œโ”€โ”€ Callbacks
| โ”œโ”€โ”€ Promises
| โ””โ”€โ”€ Async/Await
|
|โ”€โ”€ Error Handling
| โ”œโ”€โ”€ try...catch statement
| โ””โ”€โ”€ throw statement
|
|โ”€โ”€ JSON (JavaScript Object Notation)
||โ”€โ”€ Modules
| โ”œโ”€โ”€ import
| โ””โ”€โ”€ export
|
|โ”€โ”€ DOM Manipulation
| โ”œโ”€โ”€ Selecting elements
| โ”œโ”€โ”€ Modifying elements
| โ””โ”€โ”€ Creating elements
|
|โ”€โ”€ Events
| โ”œโ”€โ”€ Event listeners
| โ”œโ”€โ”€ Event propagation
| โ””โ”€โ”€ Event delegation
|
|โ”€โ”€ AJAX (Asynchronous JavaScript and XML)
|
|โ”€โ”€ Fetch API
||โ”€โ”€ ES6+ Features
| โ”œโ”€โ”€ Template literals
| โ”œโ”€โ”€ Destructuring assignment
| โ”œโ”€โ”€ Spread/rest operator
| โ”œโ”€โ”€ Arrow functions
| โ”œโ”€โ”€ Classes
| โ”œโ”€โ”€ let and const
| โ”œโ”€โ”€ Default parameters
| โ”œโ”€โ”€ Modules
| โ””โ”€โ”€ Promises
|
|โ”€โ”€ Web APIs
| โ”œโ”€โ”€ Local Storage
| โ”œโ”€โ”€ Session Storage
| โ””โ”€โ”€ Web Storage API
|
|โ”€โ”€ Libraries and Frameworks
| โ”œโ”€โ”€ React
| โ”œโ”€โ”€ Angular
| โ””โ”€โ”€ Vue.js
||โ”€โ”€ Debugging
| โ”œโ”€โ”€ Console.log()
| โ”œโ”€โ”€ Breakpoints
| โ””โ”€โ”€ DevTools
|
|โ”€โ”€ Others
| โ”œโ”€โ”€ Closures
| โ”œโ”€โ”€ Callbacks
| โ”œโ”€โ”€ Prototypes
| โ”œโ”€โ”€ this keyword
| โ”œโ”€โ”€ Hoisting
| โ””โ”€โ”€ Strict mode
|
| END __
โค2
๐Ÿญ๐Ÿฌ๐Ÿฌ๐Ÿฌ+ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฒ๐—ฑ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ฏ๐˜† ๐—œ๐—ป๐—ณ๐—ผ๐˜€๐˜†๐˜€ โ€“ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป, ๐—š๐—ฟ๐—ผ๐˜„, ๐—ฆ๐˜‚๐—ฐ๐—ฐ๐—ฒ๐—ฒ๐—ฑ!๐Ÿ˜

๐Ÿš€ Looking to upgrade your skills without spending a rupee?๐Ÿ’ฐ

Hereโ€™s your golden opportunity to unlock 1,000+ certified online courses across technology, business, communication, leadership, soft skills, and much more โ€” all absolutely FREE on Infosys Springboard!๐Ÿ”ฅ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/43UcmQ7

Save this blog, sign up, and start your upskilling journey today!โœ…๏ธ
โค1
DSA (Data Structures and Algorithms) Essential Topics for Interviews

1๏ธโƒฃ Arrays and Strings

Basic operations (insert, delete, update)

Two-pointer technique

Sliding window

Prefix sum

Kadaneโ€™s algorithm

Subarray problems


2๏ธโƒฃ Linked List

Singly & Doubly Linked List

Reverse a linked list

Detect loop (Floydโ€™s Cycle)

Merge two sorted lists

Intersection of linked lists


3๏ธโƒฃ Stack & Queue

Stack using array or linked list

Queue and Circular Queue

Monotonic Stack/Queue

LRU Cache (LinkedHashMap/Deque)

Infix to Postfix conversion


4๏ธโƒฃ Hashing

HashMap, HashSet

Frequency counting

Two Sum problem

Group Anagrams

Longest Consecutive Sequence


5๏ธโƒฃ Recursion & Backtracking

Base cases and recursive calls

Subsets, permutations

N-Queens problem

Sudoku solver

Word search


6๏ธโƒฃ Trees & Binary Trees

Traversals (Inorder, Preorder, Postorder)

Height and Diameter

Balanced Binary Tree

Lowest Common Ancestor (LCA)

Serialize & Deserialize Tree


7๏ธโƒฃ Binary Search Trees (BST)

Search, Insert, Delete

Validate BST

Kth smallest/largest element

Convert BST to DLL


8๏ธโƒฃ Heaps & Priority Queues

Min Heap / Max Heap

Heapify

Top K elements

Merge K sorted lists

Median in a stream


9๏ธโƒฃ Graphs

Representations (adjacency list/matrix)

DFS, BFS

Cycle detection (directed & undirected)

Topological Sort

Dijkstraโ€™s & Bellman-Ford algorithm

Union-Find (Disjoint Set)


10๏ธโƒฃ Dynamic Programming (DP)

0/1 Knapsack

Longest Common Subsequence

Matrix Chain Multiplication

DP on subsequences

Memoization vs Tabulation


11๏ธโƒฃ Greedy Algorithms

Activity selection

Huffman coding

Fractional knapsack

Job scheduling


12๏ธโƒฃ Tries

Insert and search a word

Word search

Auto-complete feature


13๏ธโƒฃ Bit Manipulation

XOR, AND, OR basics

Check if power of 2

Single Number problem

Count set bits

Coding Interview Resources: https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค1
๐—™๐—ฅ๐—˜๐—˜ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐—”๐—œ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐—•๐˜† ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜โ€™๐˜€ ๐—ฆ๐—ฒ๐—ป๐—ถ๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜๐Ÿ˜

Become an AI-Powered Engineer In 2025 

๐—›๐—ถ๐—ด๐—ต๐—น๐—ถ๐—ด๐—ต๐˜๐˜€:- 
- Build Real-World Agentic AI Systems
- Led by a Microsoft AI Specialist
- Live Q&A Sessions

๐—˜๐—น๐—ถ๐—ด๐—ถ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜†:- Experienced Professionals

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 

https://pdlink.in/4n0gkPW

 Date & Time:- 18 June 2025,7 PM IST

 ๐Ÿƒโ€โ™‚๏ธLimited Slots โ€“ Register Now!
๐Ÿ“Š Data Science Essentials: What Every Data Enthusiast Should Know!

1๏ธโƒฃ Understand Your Data
Always start with data exploration. Check for missing values, outliers, and overall distribution to avoid misleading insights.

2๏ธโƒฃ Data Cleaning Matters
Noisy data leads to inaccurate predictions. Standardize formats, remove duplicates, and handle missing data effectively.

3๏ธโƒฃ Use Descriptive & Inferential Statistics
Mean, median, mode, variance, standard deviation, correlation, hypothesis testingโ€”these form the backbone of data interpretation.

4๏ธโƒฃ Master Data Visualization
Bar charts, histograms, scatter plots, and heatmaps make insights more accessible and actionable.

5๏ธโƒฃ Learn SQL for Efficient Data Extraction
Write optimized queries (SELECT, JOIN, GROUP BY, WHERE) to retrieve relevant data from databases.

6๏ธโƒฃ Build Strong Programming Skills
Python (Pandas, NumPy, Scikit-learn) and R are essential for data manipulation and analysis.

7๏ธโƒฃ Understand Machine Learning Basics
Know key algorithmsโ€”linear regression, decision trees, random forests, and clusteringโ€”to develop predictive models.

8๏ธโƒฃ Learn Dashboarding & Storytelling
Power BI and Tableau help convert raw data into actionable insights for stakeholders.

๐Ÿ”ฅ Pro Tip: Always cross-check your results with different techniques to ensure accuracy!

Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

DOUBLE TAP โค๏ธ IF YOU FOUND THIS HELPFUL!
โค1
Creating a data science and machine learning project involves several steps, from defining the problem to deploying the model. Here is a general outline of how you can create a data science and ML project:

1. Define the Problem: Start by clearly defining the problem you want to solve. Understand the business context, the goals of the project, and what insights or predictions you aim to derive from the data.

2. Collect Data: Gather relevant data that will help you address the problem. This could involve collecting data from various sources, such as databases, APIs, CSV files, or web scraping.

3. Data Preprocessing: Clean and preprocess the data to make it suitable for analysis and modeling. This may involve handling missing values, encoding categorical variables, scaling features, and other data cleaning tasks.

4. Exploratory Data Analysis (EDA): Perform exploratory data analysis to understand the data better. Visualize the data, identify patterns, correlations, and outliers that may impact your analysis.

5. Feature Engineering: Create new features or transform existing features to improve the performance of your machine learning model. Feature engineering is crucial for building a successful ML model.

6. Model Selection: Choose the appropriate machine learning algorithm based on the problem you are trying to solve (classification, regression, clustering, etc.). Experiment with different models and hyperparameters to find the best-performing one.

7. Model Training: Split your data into training and testing sets and train your machine learning model on the training data. Evaluate the model's performance on the testing data using appropriate metrics.

8. Model Evaluation: Evaluate the performance of your model using metrics like accuracy, precision, recall, F1-score, ROC-AUC, etc. Make sure to analyze the results and iterate on your model if needed.

9. Deployment: Once you have a satisfactory model, deploy it into production. This could involve creating an API for real-time predictions, integrating it into a web application, or any other method of making your model accessible.

10. Monitoring and Maintenance: Monitor the performance of your deployed model and ensure that it continues to perform well over time. Update the model as needed based on new data or changes in the problem domain.
โค1