Keyboard #Shortcut Keys
Ctrl+A - Select All
Ctrl+B - Bold
Ctrl+C - Copy
Ctrl+D - Fill Down
Ctrl+F - Find
Ctrl+G - Goto
Ctrl+H - Replace
Ctrl+I - Italic
Ctrl+K - Insert Hyperlink
Ctrl+N - New Workbook
Ctrl+O - Open
Ctrl+P - Print
Ctrl+R - Fill Right
Ctrl+S - Save
Ctrl+U - Underline
Ctrl+V - Paste
Ctrl W - Close
Ctrl+X - Cut
Ctrl+Y - Repeat
Ctrl+Z - Undo
F1 - Help
F2 - Edit
F3 - Paste Name
F4 - Repeat last action
F4 - While typing a formula, switch between absolute/relative refs
F5 - Goto
F6 - Next Pane
F7 - Spell check
F8 - Extend mode
F9 - Recalculate all workbooks
F10 - Activate Menu bar
F11 - New Chart
F12 - Save As
Ctrl+: - Insert Current Time
Ctrl+; - Insert Current Date
Ctrl+" - Copy Value from Cell Above
Ctrl+โ - Copy Formula from Cell Above
Shift - Hold down shift for additional functions in Excelโs menu
Shift+F1 - Whatโs This?
Shift+F2 - Edit cell comment
Shift+F3 - Paste function into formula
Shift+F4 - Find Next
Shift+F5 - Find
Shift+F6 - Previous Pane
Shift+F8 - Add to selection
Shift+F9 - Calculate active worksheet
Shift+F10 - Display shortcut menu
Shift+F11 - New worksheet
Ctrl+F3 - Define name
Ctrl+F4 - Close
Ctrl+F5 - XL, Restore window size
Ctrl+F6 - Next workbook window
Shift+Ctrl+F6 - Previous workbook window
Ctrl+F7 - Move window
Ctrl+F8 - Resize window
Ctrl+F9 - Minimize workbook
Ctrl+F10 - Maximize or restore window
Ctrl+F11 - Inset 4.0 Macro sheet
Ctrl+F1 - File Open
Alt+F1 - Insert Chart
Alt+F2 - Save As
Alt+F4 - Exit
Alt+Down arrow - Display AutoComplete list
Alt+โ - Format Style dialog box
Ctrl+Shift+~ - General format
Ctrl+Shift+! - Comma format
Ctrl+Shift+@ - Time format
Ctrl+Shift+# - Date format
Ctrl+Shift+$ - Currency format
Ctrl+Shift+% - Percent format
Ctrl+Shift+^ - Exponential format
Ctrl+Shift+& - Place outline border around selected cells
Ctrl+Shift+_ - Remove outline border
Ctrl+Shift+* - Select current region
Ctrl++ - Insert
Ctrl+- - Delete
Ctrl+1 - Format cells dialog box
Ctrl+2 - Bold
Ctrl+3 - Italic
Ctrl+4 - Underline
Ctrl+5 - Strikethrough
Ctrl+6 - Show/Hide objects
Ctrl+7 - Show/Hide Standard toolbar
Ctrl+8 - Toggle Outline symbols
Ctrl+9 - Hide rows
Ctrl+0 - Hide columns
Ctrl+Shift+( - Unhide rows
Ctrl+Shift+) - Unhide columns
Alt or F10 - Activate the menu
Ctrl+Tab - In toolbar: next toolbar
Shift+Ctrl+Tab - In toolbar: previous toolbar
Ctrl+Tab - In a workbook: activate next workbook
Shift+Ctrl+Tab - In a workbook: activate previous workbook
Tab - Next tool
Shift+Tab - Previous tool
Enter - Do the command
Shift+Ctrl+F - Font Drop down List
Shift+Ctrl+F+F - Font tab of Format Cell Dialog box
Shift+Ctrl+P - Point size Drop down List
Ctrl + E - Align center
Ctrl + J - justify
Ctrl + L - align
Ctrl + R - align right
Alt + Tab - switch applications
Windows + P - Project screen
Windows + E - open file explorer
Windows + D - go to desktop
Windows + M - minimize all windows
Windows + S - search
Ctrl+A - Select All
Ctrl+B - Bold
Ctrl+C - Copy
Ctrl+D - Fill Down
Ctrl+F - Find
Ctrl+G - Goto
Ctrl+H - Replace
Ctrl+I - Italic
Ctrl+K - Insert Hyperlink
Ctrl+N - New Workbook
Ctrl+O - Open
Ctrl+P - Print
Ctrl+R - Fill Right
Ctrl+S - Save
Ctrl+U - Underline
Ctrl+V - Paste
Ctrl W - Close
Ctrl+X - Cut
Ctrl+Y - Repeat
Ctrl+Z - Undo
F1 - Help
F2 - Edit
F3 - Paste Name
F4 - Repeat last action
F4 - While typing a formula, switch between absolute/relative refs
F5 - Goto
F6 - Next Pane
F7 - Spell check
F8 - Extend mode
F9 - Recalculate all workbooks
F10 - Activate Menu bar
F11 - New Chart
F12 - Save As
Ctrl+: - Insert Current Time
Ctrl+; - Insert Current Date
Ctrl+" - Copy Value from Cell Above
Ctrl+โ - Copy Formula from Cell Above
Shift - Hold down shift for additional functions in Excelโs menu
Shift+F1 - Whatโs This?
Shift+F2 - Edit cell comment
Shift+F3 - Paste function into formula
Shift+F4 - Find Next
Shift+F5 - Find
Shift+F6 - Previous Pane
Shift+F8 - Add to selection
Shift+F9 - Calculate active worksheet
Shift+F10 - Display shortcut menu
Shift+F11 - New worksheet
Ctrl+F3 - Define name
Ctrl+F4 - Close
Ctrl+F5 - XL, Restore window size
Ctrl+F6 - Next workbook window
Shift+Ctrl+F6 - Previous workbook window
Ctrl+F7 - Move window
Ctrl+F8 - Resize window
Ctrl+F9 - Minimize workbook
Ctrl+F10 - Maximize or restore window
Ctrl+F11 - Inset 4.0 Macro sheet
Ctrl+F1 - File Open
Alt+F1 - Insert Chart
Alt+F2 - Save As
Alt+F4 - Exit
Alt+Down arrow - Display AutoComplete list
Alt+โ - Format Style dialog box
Ctrl+Shift+~ - General format
Ctrl+Shift+! - Comma format
Ctrl+Shift+@ - Time format
Ctrl+Shift+# - Date format
Ctrl+Shift+$ - Currency format
Ctrl+Shift+% - Percent format
Ctrl+Shift+^ - Exponential format
Ctrl+Shift+& - Place outline border around selected cells
Ctrl+Shift+_ - Remove outline border
Ctrl+Shift+* - Select current region
Ctrl++ - Insert
Ctrl+- - Delete
Ctrl+1 - Format cells dialog box
Ctrl+2 - Bold
Ctrl+3 - Italic
Ctrl+4 - Underline
Ctrl+5 - Strikethrough
Ctrl+6 - Show/Hide objects
Ctrl+7 - Show/Hide Standard toolbar
Ctrl+8 - Toggle Outline symbols
Ctrl+9 - Hide rows
Ctrl+0 - Hide columns
Ctrl+Shift+( - Unhide rows
Ctrl+Shift+) - Unhide columns
Alt or F10 - Activate the menu
Ctrl+Tab - In toolbar: next toolbar
Shift+Ctrl+Tab - In toolbar: previous toolbar
Ctrl+Tab - In a workbook: activate next workbook
Shift+Ctrl+Tab - In a workbook: activate previous workbook
Tab - Next tool
Shift+Tab - Previous tool
Enter - Do the command
Shift+Ctrl+F - Font Drop down List
Shift+Ctrl+F+F - Font tab of Format Cell Dialog box
Shift+Ctrl+P - Point size Drop down List
Ctrl + E - Align center
Ctrl + J - justify
Ctrl + L - align
Ctrl + R - align right
Alt + Tab - switch applications
Windows + P - Project screen
Windows + E - open file explorer
Windows + D - go to desktop
Windows + M - minimize all windows
Windows + S - search
Forwarded from Data Science & Machine Learning
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐ ๐๐ง ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ต๐ฎ๐ ๐ช๐ถ๐น๐น ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ๐
๐ Want to Learn Data Analytics but Hate the High Price Tags?๐ฐ๐
Good news: MIT is offering free, high-quality data analytics courses through their OpenCourseWare platform๐ป๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4iXNfS3
All The Best ๐
๐ Want to Learn Data Analytics but Hate the High Price Tags?๐ฐ๐
Good news: MIT is offering free, high-quality data analytics courses through their OpenCourseWare platform๐ป๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4iXNfS3
All The Best ๐
๐1
If you can't code but you really want to.. you just need to get in the zone.
โค3
Forwarded from Data Analytics
๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐๐ฟ๐ผ๐บ ๐ง๐ผ๐ฝ ๐๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐๐
Top Companies Offering FREE Certification Courses To Upskill In 2025
Google:- https://pdlink.in/3YsujTV
Microsoft :- https://pdlink.in/4jpmI0I
Cisco :- https://pdlink.in/4fYr1xO
HP :- https://pdlink.in/3DrNsxI
IBM :- https://pdlink.in/44GsWoC
Qualc :- https://pdlink.in/3YrFTyK
TCS :- https://pdlink.in/4cHavCa
Infosys :- https://pdlink.in/4jsHZXf
Enroll For FREE & Get Certified ๐
Top Companies Offering FREE Certification Courses To Upskill In 2025
Google:- https://pdlink.in/3YsujTV
Microsoft :- https://pdlink.in/4jpmI0I
Cisco :- https://pdlink.in/4fYr1xO
HP :- https://pdlink.in/3DrNsxI
IBM :- https://pdlink.in/44GsWoC
Qualc :- https://pdlink.in/3YrFTyK
TCS :- https://pdlink.in/4cHavCa
Infosys :- https://pdlink.in/4jsHZXf
Enroll For FREE & Get Certified ๐
๐1
๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ผ๐ฑ๐ถ๐ป๐ด ๐ก๐ผ๐, ๐ฃ๐ฎ๐ ๐๐ณ๐๐ฒ๐ฟ ๐ฃ๐น๐ฎ๐ฐ๐ฒ๐บ๐ฒ๐ป๐!๐
Learn Coding from Top Software Developers & Analytics from Top Data Scientists Working at Leading Tech Companies !๐
Eligibility:- BTech / BCA / BSc
๐ 2000+ Students Placed
๐ค 500+ Hiring Partners
๐ผ Avg. Rs. 7.4 LPA
๐ 41 LPA Highest Package
๐๐๐น๐น ๐ฆ๐๐ฎ๐ฐ๐ธ:- https://pdlink.in/4hO7rWY
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐:- https://bit.ly/4g3kyT6
Hurry, limited seats available!
Learn Coding from Top Software Developers & Analytics from Top Data Scientists Working at Leading Tech Companies !๐
Eligibility:- BTech / BCA / BSc
๐ 2000+ Students Placed
๐ค 500+ Hiring Partners
๐ผ Avg. Rs. 7.4 LPA
๐ 41 LPA Highest Package
๐๐๐น๐น ๐ฆ๐๐ฎ๐ฐ๐ธ:- https://pdlink.in/4hO7rWY
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐:- https://bit.ly/4g3kyT6
Hurry, limited seats available!
๐1
Some essential concepts every data scientist should understand:
### 1. Statistics and Probability
- Purpose: Understanding data distributions and making inferences.
- Core Concepts: Descriptive statistics (mean, median, mode), inferential statistics, probability distributions (normal, binomial), hypothesis testing, p-values, confidence intervals.
### 2. Programming Languages
- Purpose: Implementing data analysis and machine learning algorithms.
- Popular Languages: Python, R.
- Libraries: NumPy, Pandas, Scikit-learn (Python), dplyr, ggplot2 (R).
### 3. Data Wrangling
- Purpose: Cleaning and transforming raw data into a usable format.
- Techniques: Handling missing values, data normalization, feature engineering, data aggregation.
### 4. Exploratory Data Analysis (EDA)
- Purpose: Summarizing the main characteristics of a dataset, often using visual methods.
- Tools: Matplotlib, Seaborn (Python), ggplot2 (R).
- Techniques: Histograms, scatter plots, box plots, correlation matrices.
### 5. Machine Learning
- Purpose: Building models to make predictions or find patterns in data.
- Core Concepts: Supervised learning (regression, classification), unsupervised learning (clustering, dimensionality reduction), model evaluation (accuracy, precision, recall, F1 score).
- Algorithms: Linear regression, logistic regression, decision trees, random forests, support vector machines, k-means clustering, principal component analysis (PCA).
### 6. Deep Learning
- Purpose: Advanced machine learning techniques using neural networks.
- Core Concepts: Neural networks, backpropagation, activation functions, overfitting, dropout.
- Frameworks: TensorFlow, Keras, PyTorch.
### 7. Natural Language Processing (NLP)
- Purpose: Analyzing and modeling textual data.
- Core Concepts: Tokenization, stemming, lemmatization, TF-IDF, word embeddings.
- Techniques: Sentiment analysis, topic modeling, named entity recognition (NER).
### 8. Data Visualization
- Purpose: Communicating insights through graphical representations.
- Tools: Matplotlib, Seaborn, Plotly (Python), ggplot2, Shiny (R), Tableau.
- Techniques: Bar charts, line graphs, heatmaps, interactive dashboards.
### 9. Big Data Technologies
- Purpose: Handling and analyzing large volumes of data.
- Technologies: Hadoop, Spark.
- Core Concepts: Distributed computing, MapReduce, parallel processing.
### 10. Databases
- Purpose: Storing and retrieving data efficiently.
- Types: SQL databases (MySQL, PostgreSQL), NoSQL databases (MongoDB, Cassandra).
- Core Concepts: Querying, indexing, normalization, transactions.
### 11. Time Series Analysis
- Purpose: Analyzing data points collected or recorded at specific time intervals.
- Core Concepts: Trend analysis, seasonal decomposition, ARIMA models, exponential smoothing.
### 12. Model Deployment and Productionization
- Purpose: Integrating machine learning models into production environments.
- Techniques: API development, containerization (Docker), model serving (Flask, FastAPI).
- Tools: MLflow, TensorFlow Serving, Kubernetes.
### 13. Data Ethics and Privacy
- Purpose: Ensuring ethical use and privacy of data.
- Core Concepts: Bias in data, ethical considerations, data anonymization, GDPR compliance.
### 14. Business Acumen
- Purpose: Aligning data science projects with business goals.
- Core Concepts: Understanding key performance indicators (KPIs), domain knowledge, stakeholder communication.
### 15. Collaboration and Version Control
- Purpose: Managing code changes and collaborative work.
- Tools: Git, GitHub, GitLab.
- Practices: Version control, code reviews, collaborative development.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
### 1. Statistics and Probability
- Purpose: Understanding data distributions and making inferences.
- Core Concepts: Descriptive statistics (mean, median, mode), inferential statistics, probability distributions (normal, binomial), hypothesis testing, p-values, confidence intervals.
### 2. Programming Languages
- Purpose: Implementing data analysis and machine learning algorithms.
- Popular Languages: Python, R.
- Libraries: NumPy, Pandas, Scikit-learn (Python), dplyr, ggplot2 (R).
### 3. Data Wrangling
- Purpose: Cleaning and transforming raw data into a usable format.
- Techniques: Handling missing values, data normalization, feature engineering, data aggregation.
### 4. Exploratory Data Analysis (EDA)
- Purpose: Summarizing the main characteristics of a dataset, often using visual methods.
- Tools: Matplotlib, Seaborn (Python), ggplot2 (R).
- Techniques: Histograms, scatter plots, box plots, correlation matrices.
### 5. Machine Learning
- Purpose: Building models to make predictions or find patterns in data.
- Core Concepts: Supervised learning (regression, classification), unsupervised learning (clustering, dimensionality reduction), model evaluation (accuracy, precision, recall, F1 score).
- Algorithms: Linear regression, logistic regression, decision trees, random forests, support vector machines, k-means clustering, principal component analysis (PCA).
### 6. Deep Learning
- Purpose: Advanced machine learning techniques using neural networks.
- Core Concepts: Neural networks, backpropagation, activation functions, overfitting, dropout.
- Frameworks: TensorFlow, Keras, PyTorch.
### 7. Natural Language Processing (NLP)
- Purpose: Analyzing and modeling textual data.
- Core Concepts: Tokenization, stemming, lemmatization, TF-IDF, word embeddings.
- Techniques: Sentiment analysis, topic modeling, named entity recognition (NER).
### 8. Data Visualization
- Purpose: Communicating insights through graphical representations.
- Tools: Matplotlib, Seaborn, Plotly (Python), ggplot2, Shiny (R), Tableau.
- Techniques: Bar charts, line graphs, heatmaps, interactive dashboards.
### 9. Big Data Technologies
- Purpose: Handling and analyzing large volumes of data.
- Technologies: Hadoop, Spark.
- Core Concepts: Distributed computing, MapReduce, parallel processing.
### 10. Databases
- Purpose: Storing and retrieving data efficiently.
- Types: SQL databases (MySQL, PostgreSQL), NoSQL databases (MongoDB, Cassandra).
- Core Concepts: Querying, indexing, normalization, transactions.
### 11. Time Series Analysis
- Purpose: Analyzing data points collected or recorded at specific time intervals.
- Core Concepts: Trend analysis, seasonal decomposition, ARIMA models, exponential smoothing.
### 12. Model Deployment and Productionization
- Purpose: Integrating machine learning models into production environments.
- Techniques: API development, containerization (Docker), model serving (Flask, FastAPI).
- Tools: MLflow, TensorFlow Serving, Kubernetes.
### 13. Data Ethics and Privacy
- Purpose: Ensuring ethical use and privacy of data.
- Core Concepts: Bias in data, ethical considerations, data anonymization, GDPR compliance.
### 14. Business Acumen
- Purpose: Aligning data science projects with business goals.
- Core Concepts: Understanding key performance indicators (KPIs), domain knowledge, stakeholder communication.
### 15. Collaboration and Version Control
- Purpose: Managing code changes and collaborative work.
- Tools: Git, GitHub, GitLab.
- Practices: Version control, code reviews, collaborative development.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
๐2
WhatsApp is no longer a platform just for chat.
It's an educational goldmine.
If you do, youโre sleeping on a goldmine of knowledge and community. WhatsApp channels are a great way to practice data science, make your own community, and find accountability partners.
I have curated the list of best WhatsApp channels to learn coding & data science for FREE
Free Courses with Certificate
๐๐
https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g
Jobs & Internship Opportunities
๐๐
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Web Development
๐๐
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
Python Free Books & Projects
๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Java Free Resources
๐๐
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
Coding Interviews
๐๐
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
SQL For Data Analysis
๐๐
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
Power BI Resources
๐๐
https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
Programming Free Resources
๐๐
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
Data Science Projects
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Learn Data Science & Machine Learning
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
ENJOY LEARNING ๐๐
It's an educational goldmine.
If you do, youโre sleeping on a goldmine of knowledge and community. WhatsApp channels are a great way to practice data science, make your own community, and find accountability partners.
I have curated the list of best WhatsApp channels to learn coding & data science for FREE
Free Courses with Certificate
๐๐
https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g
Jobs & Internship Opportunities
๐๐
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Web Development
๐๐
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
Python Free Books & Projects
๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Java Free Resources
๐๐
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
Coding Interviews
๐๐
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
SQL For Data Analysis
๐๐
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
Power BI Resources
๐๐
https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
Programming Free Resources
๐๐
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
Data Science Projects
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Learn Data Science & Machine Learning
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
ENJOY LEARNING ๐๐
๐2โค1
๐40 Windows Command Prompt commands you need to know๐
1. ipconfig
2. ipconfig /all
3. findstr
4. ipconfig /release
5. ipconfig /renew
6. ipconfig /displaydns
7. clip
8. ipconfig /flushdns
9. nslookup
10. cls
11. getmac /v
12. powercfg /energy
13. powercfg /batteryreport
14. assoc
15. chkdsk /f
16. chkdsk /r
17. Follow Coding Army
17. sfc /scannow
18. DISM /Online /Cleanup /CheckHealth
19. DISM /Online /Cleanup /ScanHealth
20. DISM /Online /Cleanup /RestoreHealth
21. tasklist
22. taskkill
23. netsh wlan show wlanreport
24. netsh interface show interface
25. netsh interface ip show address | findstr "IP Address"
26. netsh interface ip show dnsservers
27. netsh advfirewall set allprofiles state off
28. netsh advfirewall set allprofiles state on
29. ping
30. ping -t
31. tracert
32. tracert -d
33. netstat
34. netstat -af
35. netstat -o
36. netstat -e -t 5
37. route print
38. route add
39. route delete
40. shutdown /r /fw /f /t 0
Command 40:
*Details:*
The command
https://whatsapp.com/channel/0029VancSnGG8l5KQYOOyL1T
1. ipconfig
2. ipconfig /all
3. findstr
4. ipconfig /release
5. ipconfig /renew
6. ipconfig /displaydns
7. clip
8. ipconfig /flushdns
9. nslookup
10. cls
11. getmac /v
12. powercfg /energy
13. powercfg /batteryreport
14. assoc
15. chkdsk /f
16. chkdsk /r
17. Follow Coding Army
17. sfc /scannow
18. DISM /Online /Cleanup /CheckHealth
19. DISM /Online /Cleanup /ScanHealth
20. DISM /Online /Cleanup /RestoreHealth
21. tasklist
22. taskkill
23. netsh wlan show wlanreport
24. netsh interface show interface
25. netsh interface ip show address | findstr "IP Address"
26. netsh interface ip show dnsservers
27. netsh advfirewall set allprofiles state off
28. netsh advfirewall set allprofiles state on
29. ping
30. ping -t
31. tracert
32. tracert -d
33. netstat
34. netstat -af
35. netstat -o
36. netstat -e -t 5
37. route print
38. route add
39. route delete
40. shutdown /r /fw /f /t 0
Command 40:
*Details:*
The command
shutdown /r/fw/f/t 0 restarts the computer immediately and forces it to boot directly into the BIOS or UEFI firmware settings, bypassing the normal Windows startup process. It's a convenient way to access your firmware settings without having to repeatedly press a specific key during startup (like Del, F2, F10, F12, Esc, etc., which vary depending on the motherboard manufacturer.https://whatsapp.com/channel/0029VancSnGG8l5KQYOOyL1T
โค3
Confused about which field to dive intoโFront-End Development (FE), Back-End Development (BE), Machine Learning (ML), or Blockchain?
Here's a concise breakdown of each, designed to clarify your options:
### Front-End Development (FE)
Key Skills:
- HTML/CSS: Fundamental for creating the structure and style of web pages.
- JavaScript: Essential for adding interactivity and functionality to websites.
- Frameworks/Libraries: React, Angular, or Vue.js for efficient and scalable front-end development.
- Responsive Design: Ensuring websites look good on all devices.
- Version Control: Git for managing code changes and collaboration.
Career Prospects:
- Web Developer
- UI/UX Designer
- Front-End Engineer
### Back-End Development (BE)
Key Skills:
- Programming Languages: Python, Java, Ruby, Node.js, or PHP for server-side logic.
- Databases: SQL (MySQL, PostgreSQL) and NoSQL (MongoDB) for data management.
- APIs: RESTful and GraphQL for communication between front-end and back-end.
- Server Management: Understanding of server, network, and hosting environments.
- Security: Knowledge of authentication, authorization, and data protection.
Career Prospects:
- Back-End Developer
- Full-Stack Developer
- Database Administrator
### Machine Learning (ML)
Key Skills:
- Programming Languages: Python and R are widely used in ML.
- Mathematics: Statistics, linear algebra, and calculus for understanding ML algorithms.
- Libraries/Frameworks: TensorFlow, PyTorch, Scikit-Learn for building ML models.
- Data Handling: Pandas, NumPy for data manipulation and preprocessing.
- Model Evaluation: Techniques for assessing model performance.
Career Prospects:
- Data Scientist
- Machine Learning Engineer
- AI Researcher
### Blockchain
Key Skills:
- Cryptography: Understanding of encryption and security principles.
- Blockchain Platforms: Ethereum, Hyperledger, Binance Smart Chain for building decentralized applications.
- Smart Contracts: Solidity for developing smart contracts.
- Distributed Systems: Knowledge of peer-to-peer networks and consensus algorithms.
- Blockchain Tools: Truffle, Ganache, Metamask for development and testing.
Career Prospects:
- Blockchain Developer
- Smart Contract Developer
- Crypto Analyst
### Decision Criteria
1. Interest: Choose an area you are genuinely interested in.
2. Market Demand: Research the current job market to see which skills are in demand.
3. Career Goals: Consider your long-term career aspirations.
4. Learning Curve: Assess how much time and effort you can dedicate to learning new skills.
Each field offers unique opportunities and challenges, so weigh your options carefully based on your personal preferences and career objectives.
Here are some telegram channels to help you build your career ๐
Web Development
https://t.iss.one/webdevcoursefree
Jobs & Internships
https://t.iss.one/getjobss
Blockchain
https://t.iss.one/Bitcoin_Crypto_Web
Machine Learning
https://t.iss.one/datasciencefun
Artificial Intelligence
https://t.iss.one/machinelearning_deeplearning
Join @free4unow_backup for more free resources.
ENJOY LEARNING ๐๐
Here's a concise breakdown of each, designed to clarify your options:
### Front-End Development (FE)
Key Skills:
- HTML/CSS: Fundamental for creating the structure and style of web pages.
- JavaScript: Essential for adding interactivity and functionality to websites.
- Frameworks/Libraries: React, Angular, or Vue.js for efficient and scalable front-end development.
- Responsive Design: Ensuring websites look good on all devices.
- Version Control: Git for managing code changes and collaboration.
Career Prospects:
- Web Developer
- UI/UX Designer
- Front-End Engineer
### Back-End Development (BE)
Key Skills:
- Programming Languages: Python, Java, Ruby, Node.js, or PHP for server-side logic.
- Databases: SQL (MySQL, PostgreSQL) and NoSQL (MongoDB) for data management.
- APIs: RESTful and GraphQL for communication between front-end and back-end.
- Server Management: Understanding of server, network, and hosting environments.
- Security: Knowledge of authentication, authorization, and data protection.
Career Prospects:
- Back-End Developer
- Full-Stack Developer
- Database Administrator
### Machine Learning (ML)
Key Skills:
- Programming Languages: Python and R are widely used in ML.
- Mathematics: Statistics, linear algebra, and calculus for understanding ML algorithms.
- Libraries/Frameworks: TensorFlow, PyTorch, Scikit-Learn for building ML models.
- Data Handling: Pandas, NumPy for data manipulation and preprocessing.
- Model Evaluation: Techniques for assessing model performance.
Career Prospects:
- Data Scientist
- Machine Learning Engineer
- AI Researcher
### Blockchain
Key Skills:
- Cryptography: Understanding of encryption and security principles.
- Blockchain Platforms: Ethereum, Hyperledger, Binance Smart Chain for building decentralized applications.
- Smart Contracts: Solidity for developing smart contracts.
- Distributed Systems: Knowledge of peer-to-peer networks and consensus algorithms.
- Blockchain Tools: Truffle, Ganache, Metamask for development and testing.
Career Prospects:
- Blockchain Developer
- Smart Contract Developer
- Crypto Analyst
### Decision Criteria
1. Interest: Choose an area you are genuinely interested in.
2. Market Demand: Research the current job market to see which skills are in demand.
3. Career Goals: Consider your long-term career aspirations.
4. Learning Curve: Assess how much time and effort you can dedicate to learning new skills.
Each field offers unique opportunities and challenges, so weigh your options carefully based on your personal preferences and career objectives.
Here are some telegram channels to help you build your career ๐
Web Development
https://t.iss.one/webdevcoursefree
Jobs & Internships
https://t.iss.one/getjobss
Blockchain
https://t.iss.one/Bitcoin_Crypto_Web
Machine Learning
https://t.iss.one/datasciencefun
Artificial Intelligence
https://t.iss.one/machinelearning_deeplearning
Join @free4unow_backup for more free resources.
ENJOY LEARNING ๐๐
โค1