Artificial Intelligence & ChatGPT Prompts
40.5K subscribers
667 photos
5 videos
319 files
561 links
๐Ÿ”“Unlock Your Coding Potential with ChatGPT
๐Ÿš€ Your Ultimate Guide to Ace Coding Interviews!
๐Ÿ’ป Coding tips, practice questions, and expert advice to land your dream tech job.


For Promotions: @love_data
Download Telegram
SQL best practices:

โœ” Use EXISTS in place of IN wherever possible
โœ” Use table aliases with columns when you are joining multiple tables
โœ” Use GROUP BY instead of DISTINCT.
โœ” Add useful comments wherever you write complex logic and avoid too many comments.
โœ” Use joins instead of subqueries when possible for better performance.
โœ” Use WHERE instead of HAVING to define filters on non-aggregate fields
โœ” Avoid wildcards at beginning of predicates (something like '%abc' will cause full table scan to get the results)
โœ” Considering cardinality within GROUP BY can make it faster (try to consider unique column first in group by list)
โœ” Write SQL keywords in capital letters.
โœ” Never use select *, always mention list of columns in select clause.
โœ” Create CTEs instead of multiple sub queries , it will make your query easy to read.
โœ” Join tables using JOIN keywords instead of writing join condition in where clause for better readability.
โœ” Never use order by in sub queries , It will unnecessary increase runtime.
โœ” If you know there are no duplicates in 2 tables, use UNION ALL instead of UNION for better performance
โœ” Always start WHERE clause with 1 = 1.This has the advantage of easily commenting out conditions during debugging a query.
โœ” Taking care of NULL values before using equality or comparisons operators. Applying window functions. Filtering the query before joining and having clause.
โœ” Make sure the JOIN conditions among two table Join are either keys or Indexed attribute.

Hope it helps :)
โค2๐Ÿ‘2
๐—ง๐—ผ๐—ฝ ๐Ÿฑ ๐—ง๐—ฒ๐—ฐ๐—ต๐—ป๐—ผ๐—น๐—ผ๐—ด๐—ถ๐—ฒ๐˜€ ๐—ง๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—œ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ | ๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ ๐Ÿ˜ 

Acquire industry-relevant skills to grow in your career and stand out to prospective employers.

๐—”๐—œ & ๐— ๐—Ÿ :- https://pdlink.in/3U3eZuq

๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ :- https://pdlink.in/4lp7hXQ

๐—–๐—น๐—ผ๐˜‚๐—ฑ ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ถ๐—ป๐—ด :- https://pdlink.in/3GtNJlO

๐—–๐˜†๐—ฏ๐—ฒ๐—ฟ ๐—ฆ๐—ฒ๐—ฐ๐˜‚๐—ฟ๐—ถ๐˜๐˜† :- https://pdlink.in/4nHBuTh

๐—™๐˜‚๐—น๐—น๐˜€๐˜๐—ฎ๐—ฐ๐—ธ :- https://pdlink.in/3ImMFAB

Enroll For FREE & Get Certified ๐ŸŽ“
โค1
Complete Roadmap to learn SQL in 2025 ๐Ÿ‘‡๐Ÿ‘‡

1. Basic Concepts
- Understand databases and SQL.
- Learn data types (INT, VARCHAR, DATE, etc.).

2. Basic Queries
- SELECT: Retrieve data.
- WHERE: Filter results.
- ORDER BY: Sort results.
- LIMIT: Restrict results.

3. Aggregate Functions
- COUNT, SUM, AVG, MAX, MIN.
- Use GROUP BY to group results.

4. Joins
- INNER JOIN: Combine rows from two tables based on a condition.
- LEFT JOIN: Include all rows from the left table.
- RIGHT JOIN: Include all rows from the right table.
- FULL OUTER JOIN: Include all rows from both tables.

5. Subqueries
- Use nested queries for complex data retrieval.

6. Data Manipulation
- INSERT: Add new records.
- UPDATE: Modify existing records.
- DELETE: Remove records.

7. Schema Management
- CREATE TABLE: Define new tables.
- ALTER TABLE: Modify existing tables.
- DROP TABLE: Remove tables.

8. Indexes
- Understand how to create and use indexes to optimize queries.

9. Views
- Create and manage views for simplified data access.

10. Transactions
- Learn about COMMIT and ROLLBACK for data integrity.

11. Advanced Topics
- Stored Procedures: Automate complex tasks.
- Triggers: Execute actions automatically based on events.
- Normalization: Understand database design principles.

12. Practice
- Use platforms like LeetCode, HackerRank, or learnsql for hands-on practice.

Here are some free resources to learn  & practice SQL ๐Ÿ‘‡๐Ÿ‘‡

SQL For Data Analysis: https://t.iss.one/sqlanalyst

For Practice- https://stratascratch.com/?via=free

SQL Learning Series: https://t.iss.one/sqlspecialist/567

Top 10 SQL Projects with Datasets: https://t.iss.one/DataPortfolio/16

Join for more free resources: https://t.iss.one/free4unow_backup

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค1๐Ÿ‘1
๐Ÿฏ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—š๐—ถ๐˜๐—›๐˜‚๐—ฏ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—ณ๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Want to master Python for Data Analytics without spending a single rupee?๐Ÿ’ฐโœจ๏ธ

You donโ€™t need expensive bootcamps or paid certifications to get started. Thanks to the open-source community, there are incredible free GitHub repositories that cover everything you need๐Ÿง‘โ€๐Ÿ’ป๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/47hf59F

Donโ€™t just study theoryโ€”start coding, analyzing, and building today. Your portfolio (and future self) will thank youโœ…๏ธ
โค1
Complete DSA Roadmap

|-- Basic_Data_Structures
| |-- Arrays
| |-- Strings
| |-- Linked_Lists
| |-- Stacks
| โ””โ”€ Queues
|
|-- Advanced_Data_Structures
| |-- Trees
| | |-- Binary_Trees
| | |-- Binary_Search_Trees
| | |-- AVL_Trees
| | โ””โ”€ B-Trees
| |
| |-- Graphs
| | |-- Graph_Representation
| | | |- Adjacency_Matrix
| | | โ”” Adjacency_List
| | |
| | |-- Depth-First_Search
| | |-- Breadth-First_Search
| | |-- Shortest_Path_Algorithms
| | | |- Dijkstra's_Algorithm
| | | โ”” Bellman-Ford_Algorithm
| | |
| | โ””โ”€ Minimum_Spanning_Tree
| | |- Prim's_Algorithm
| | โ”” Kruskal's_Algorithm
| |
| |-- Heaps
| | |-- Min_Heap
| | |-- Max_Heap
| | โ””โ”€ Heap_Sort
| |
| |-- Hash_Tables
| |-- Disjoint_Set_Union
| |-- Trie
| |-- Segment_Tree
| โ””โ”€ Fenwick_Tree
|
|-- Algorithmic_Paradigms
| |-- Brute_Force
| |-- Divide_and_Conquer
| |-- Greedy_Algorithms
| |-- Dynamic_Programming
| |-- Backtracking
| |-- Sliding_Window_Technique
| |-- Two_Pointer_Technique
| โ””โ”€ Divide_and_Conquer_Optimization
| |-- Merge_Sort_Tree
| โ””โ”€ Persistent_Segment_Tree
|
|-- Searching_Algorithms
| |-- Linear_Search
| |-- Binary_Search
| |-- Depth-First_Search
| โ””โ”€ Breadth-First_Search
|
|-- Sorting_Algorithms
| |-- Bubble_Sort
| |-- Selection_Sort
| |-- Insertion_Sort
| |-- Merge_Sort
| |-- Quick_Sort
| โ””โ”€ Heap_Sort
|
|-- Graph_Algorithms
| |-- Depth-First_Search
| |-- Breadth-First_Search
| |-- Topological_Sort
| |-- Strongly_Connected_Components
| โ””โ”€ Articulation_Points_and_Bridges
|
|-- Dynamic_Programming
| |-- Introduction_to_DP
| |-- Fibonacci_Series_using_DP
| |-- Longest_Common_Subsequence
| |-- Longest_Increasing_Subsequence
| |-- Knapsack_Problem
| |-- Matrix_Chain_Multiplication
| โ””โ”€ Dynamic_Programming_on_Trees
|
|-- Mathematical_and_Bit_Manipulation_Algorithms
| |-- Prime_Numbers_and_Sieve_of_Eratosthenes
| |-- Greatest_Common_Divisor
| |-- Least_Common_Multiple
| |-- Modular_Arithmetic
| โ””โ”€ Bit_Manipulation_Tricks
|
|-- Advanced_Topics
| |-- Trie-based_Algorithms
| | |-- Auto-completion
| | โ””โ”€ Spell_Checker
| |
| |-- Suffix_Trees_and_Arrays
| |-- Computational_Geometry
| |-- Number_Theory
| | |-- Euler's_Totient_Function
| | โ””โ”€ Mobius_Function
| |
| โ””โ”€ String_Algorithms
| |-- KMP_Algorithm
| โ””โ”€ Rabin-Karp_Algorithm
|
|-- OnlinePlatforms
| |-- LeetCode
| |-- HackerRank
โค1
๐Ÿ”ฅ Recent Data Analyst Interview Q&A at Deloitte ๐Ÿ”ฅ

Question:
๐Ÿ‘‰ Write an SQL query to extract the third highest salary from an employee table with columns EID and ESalary.

Solution:
SELECT ESalary  
FROM (
SELECT ESalary,
DENSE_RANK() OVER (ORDER BY ESalary DESC) AS salary_rank
FROM employee
) AS ranked_salaries
WHERE salary_rank = 3;

Explanation of the Query:

1๏ธโƒฃ Step 1: Create a Subquery

The subquery ranks all salaries in descending order using DENSE_RANK().

2๏ธโƒฃ Step 2: Rank the Salaries

Assigns ranks: 1 for the highest salary, 2 for the second-highest, and so on.

3๏ธโƒฃ Step 3: Assign an Alias

The subquery is given an alias (ranked_salaries) to use in the main query.

4๏ธโƒฃ Step 4: Filter for the Third Highest Salary

The WHERE clause filters the results to include only the salary with rank 3.

5๏ธโƒฃ Step 5: Display the Third Highest Salary

The main query selects and displays the third-highest salary.

By following these steps, you can easily extract the third-highest salary from the table.



#DataAnalyst #SQL #InterviewTips
โค2
Here's a concise cheat sheet to help you get started with Python for Data Analytics. This guide covers essential libraries and functions that you'll frequently use.


1. Python Basics
- Variables:
x = 10
y = "Hello"

- Data Types:
  - Integers: x = 10
  - Floats: y = 3.14
  - Strings: name = "Alice"
  - Lists: my_list = [1, 2, 3]
  - Dictionaries: my_dict = {"key": "value"}
  - Tuples: my_tuple = (1, 2, 3)

- Control Structures:
  - if, elif, else statements
  - Loops: 
  
    for i in range(5):
        print(i)
   

  - While loop:
  
    while x < 5:
        print(x)
        x += 1
   

2. Importing Libraries

- NumPy:
  import numpy as np
 

- Pandas:
  import pandas as pd
 

- Matplotlib:
  import matplotlib.pyplot as plt
 

- Seaborn:
  import seaborn as sns
 

3. NumPy for Numerical Data

- Creating Arrays:
  arr = np.array([1, 2, 3, 4])
 

- Array Operations:
  arr.sum()
  arr.mean()
 

- Reshaping Arrays:
  arr.reshape((2, 2))
 

- Indexing and Slicing:
  arr[0:2]  # First two elements
 

4. Pandas for Data Manipulation

- Creating DataFrames:
  df = pd.DataFrame({
      'col1': [1, 2, 3],
      'col2': ['A', 'B', 'C']
  })
 

- Reading Data:
  df = pd.read_csv('file.csv')
 

- Basic Operations:
  df.head()          # First 5 rows
  df.describe()      # Summary statistics
  df.info()          # DataFrame info
 

- Selecting Columns:
  df['col1']
  df[['col1', 'col2']]
 

- Filtering Data:
  df[df['col1'] > 2]
 

- Handling Missing Data:
  df.dropna()        # Drop missing values
  df.fillna(0)       # Replace missing values
 

- GroupBy:
  df.groupby('col2').mean()
 

5. Data Visualization

- Matplotlib:
  plt.plot(df['col1'], df['col2'])
  plt.xlabel('X-axis')
  plt.ylabel('Y-axis')
  plt.title('Title')
  plt.show()
 

- Seaborn:
  sns.histplot(df['col1'])
  sns.boxplot(x='col1', y='col2', data=df)
 

6. Common Data Operations

- Merging DataFrames:
  pd.merge(df1, df2, on='key')
 

- Pivot Table:
  df.pivot_table(index='col1', columns='col2', values='col3')
 

- Applying Functions:
  df['col1'].apply(lambda x: x*2)
 

7. Basic Statistics

- Descriptive Stats:
  df['col1'].mean()
  df['col1'].median()
  df['col1'].std()
 

- Correlation:
  df.corr()
 

This cheat sheet should give you a solid foundation in Python for data analytics. As you get more comfortable, you can delve deeper into each library's documentation for more advanced features.

I have curated the best resources to learn Python ๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Hope you'll like it

Like this post if you need more resources like this ๐Ÿ‘โค๏ธ
โค1
๐Ÿญ๐Ÿฌ๐Ÿฌ% ๐—™๐—ฅ๐—˜๐—˜ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐Ÿ˜

Master in-demand skills like Excel, SQL, Power BI & Data Visualization with 100% FREE Certification ๐Ÿ’ฏ

โœ… Industry-Relevant Curriculum
โœ… No Cost โ€“ Lifetime Free Access
โœ… Boost Your Resume & Job Readiness

Perfect for Students, Freshers & Career Switchers!

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 
 
https://pdlink.in/4lp7hXQ
 
๐ŸŽ“ Enroll Now & Get Certified
โค1
๐—ง๐—ผ๐—ฝ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—”๐˜€๐—ธ๐—ฒ๐—ฑ ๐—ฏ๐˜† ๐— ๐—ก๐—–๐˜€๐Ÿ˜

If you can answer these Python questions, youโ€™re already ahead of 90% of candidates.๐Ÿง‘โ€๐Ÿ’ปโœจ๏ธ

These arenโ€™t your average textbook questions. These are real interview questions asked in top MNCs โ€” designed to test how deeply you understand Python.๐Ÿ“Š๐Ÿ“

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4mu4oVx

This is the smart way to prepareโœ…๏ธ
โค1
โœ… Learn New Skills FREE ๐Ÿ”ฐ

1. Web Development โž
โ—€๏ธ https://t.iss.one/webdevcoursefree

2. CSS โž
โ—€๏ธ https://css-tricks.com

3. JavaScript โž
โ—€๏ธ https://t.iss.one/javascript_courses

4. React โž
โ—€๏ธ https://react-tutorial.app

5. Data Engineering โž
โ—€๏ธ https://t.iss.one/sql_engineer

6. Data Science  โž
โ—€๏ธ https://t.iss.one/datasciencefun

7. Python โž
โ—€๏ธ https://pythontutorial.net

8. SQL โž
โ—€๏ธ  https://t.iss.one/sqlanalyst

9. Git and GitHub โž
โ—€๏ธ https://GitFluence.com

10. Blockchain โž
โ—€๏ธ https://t.iss.one/Bitcoin_Crypto_Web

11. Mongo DB โž
โ—€๏ธ https://mongodb.com

12. Node JS โž
โ—€๏ธ https://nodejsera.com

13. English Speaking โž
โ—€๏ธ https://t.iss.one/englishlearnerspro

14. C#โž
โ—€๏ธ https://learn.microsoft.com/en-us/training/paths/get-started-c-sharp-part-1/

15. Excelโž
โ—€๏ธ https://t.iss.one/excel_analyst

16. Generative AIโž
โ—€๏ธ https://t.iss.one/generativeai_gpt

17. Java
โ—€๏ธ https://t.iss.one/Java_Programming_Notes

18. Artificial Intelligence
โ—€๏ธ https://t.iss.one/machinelearning_deeplearning

19. Data Structure & Algorithms
โ—€๏ธ https://t.iss.one/dsabooks

20. Backend Development
โ—€๏ธ https://imp.i115008.net/rn2nyy

21. Python for AI
โ—€๏ธ https://deeplearning.ai/short-courses/ai-python-for-beginners/

Join @free4unow_backup for more free courses

Like for more โค๏ธ

ENJOY LEARNING๐Ÿ‘๐Ÿ‘
โค1
๐Ÿ“ฑ 25 YouTube Channels to Learn Programming for FREE ๐Ÿ’ป๐Ÿš€

โœ… freeCodeCamp
โœ… The Net Ninja
โœ… Traversy Media
โœ… Programming with Mosh
โœ… Fireship
โœ… Amigoscode
โœ… CS50 by Harvard
โœ… CodeWithHarry
โœ… Tech with Tim
โœ… Academind
โœ… Web Dev Simplified
โœ… The Odin Project
โœ… JavaScript Mastery
โœ… Derek Banas
โœ… Bro Code
โœ… Simplilearn
โœ… Codevolution
โœ… Hussein Nasser
โœ… Dev Ed
โœ… Sonny Sangha
โœ… Telusko
โœ… Caleb Curry
โœ… Python Engineer
โœ… Clever Programmer
โœ… GeeksforGeeks

๐Ÿ”ฅ React โ€œโค๏ธโ€ if you found this helpful!
โค5๐Ÿฅฐ1
When to Use Which Programming Language?

C โž OS Development, Embedded Systems, Game Engines
C++ โž Game Dev, High-Performance Apps, Finance
Java โž Enterprise Apps, Android, Backend
C# โž Unity Games, Windows Apps
Python โž AI/ML, Data, Automation, Web Dev
JavaScript โž Frontend, Full-Stack, Web Games
Golang โž Cloud Services, APIs, Networking
Swift โž iOS/macOS Apps
Kotlin โž Android, Backend
PHP โž Web Dev (WordPress, Laravel)
Ruby โž Web Dev (Rails), Prototypes
Rust โž System Apps, Blockchain, HPC
Lua โž Game Scripting (Roblox, WoW)
R โž Stats, Data Science, Bioinformatics
SQL โž Data Analysis, DB Management
TypeScript โž Scalable Web Apps
Node.js โž Backend, Real-Time Apps
React โž Modern Web UIs
Vue โž Lightweight SPAs
Django โž AI/ML Backend, Web Dev
Laravel โž Full-Stack PHP
Blazor โž Web with .NET
Spring Boot โž Microservices, Java Enterprise
Ruby on Rails โž MVPs, Startups
HTML/CSS โž UI/UX, Web Design
Git โž Version Control
Linux โž Server, Security, DevOps
DevOps โž Infra Automation, CI/CD
CI/CD โž Testing + Deployment
Docker โž Containerization
Kubernetes โž Cloud Orchestration
Microservices โž Scalable Backends
Selenium โž Web Testing
Playwright โž Modern Web Automation

Credits: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค2
๐—”๐—œ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿš€

AI is the future now & highly in demand 

๐Ÿ’ผ Learn in-demand AI skills
๐Ÿ“š Beginner-friendly โ€” No experience needed
โœ… Get Certified & Boost Your Career
๐ŸŽฏ 100% Free โ€“ Limited Time!

๐Ÿ”— ๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ ๐—ก๐—ผ๐˜„ ๐Ÿ‘‡:-

https://pdlink.in/3U3eZuq

๐Ÿ“Œ Enroll today & start your AI journey!
โค4
TOP 10 SQL Concepts for Job Interview

1. Aggregate Functions (SUM/AVG)
2. Group By and Order By
3. JOINs (Inner/Left/Right)
4. Union and Union All
5. Date and Time processing
6. String processing
7. Window Functions (Partition by)
8. Subquery
9. View and Index
10. Common Table Expression (CTE)


TOP 10 Statistics Concepts for Job Interview

1. Sampling
2. Experiments (A/B tests)
3. Descriptive Statistics
4. p-value
5. Probability Distributions
6. t-test
7. ANOVA
8. Correlation
9. Linear Regression
10. Logistics Regression


TOP 10 Python Concepts for Job Interview

1. Reading data from file/table
2. Writing data to file/table
3. Data Types
4. Function
5. Data Preprocessing (numpy/pandas)
6. Data Visualisation (Matplotlib/seaborn/bokeh)
7. Machine Learning (sklearn)
8. Deep Learning (Tensorflow/Keras/PyTorch)
9. Distributed Processing (PySpark)
10. Functional and Object Oriented Programming
โค1
One day or Day one. You decide.

Data Science edition.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜† : I will learn SQL.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Download mySQL Workbench.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will build my projects for my portfolio.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Look on Kaggle for a dataset to work on.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will master statistics.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Start the free Khan Academy Statistics and Probability course.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will learn to tell stories with data.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Install Tableau Public and create my first chart.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will become a Data Scientist.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Update my resume and apply to some Data Science job postings.
โค1
Breaking into Data Analytics doesnโ€™t need to be complicated.

If youโ€™re just starting out,

Hereโ€™s how to simplify your approach:

Avoid:
๐Ÿšซ Jumping into advanced tools like Hadoop or Spark before mastering the basics.
๐Ÿšซ Focusing only on tools, not on business problem-solving.
๐Ÿšซ Collecting certificates instead of solving real problems.
๐Ÿšซ Thinking you need to know everything from SQL to machine learning right away.

Instead:
โœ… Start with Excel, SQL, and one visualization tool (like Power BI or Tableau).
โœ… Learn how to clean, explore, and interpret data to solve business questions.
โœ… Understand core concepts like KPIs, dashboards, and business metrics.
โœ… Pick real datasets and analyze them with clear goals and insights.
โœ… Build a portfolio that shows you can translate data into decisions.

React โค๏ธ for more
โค1