Forwarded from Free Online Courses with Certificate | Udacity Free Courses | Eduonix | IP Cybersecurity | Coursera | Premium Certified Courses
๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ผ ๐๐ป๐ฟ๐ผ๐น๐น ๐๐ป ๐ฎ๐ฌ๐ฎ๐ฑ ๐
Data Analytics :- https://pdlink.in/3Fq7E4p
Data Science :- https://pdlink.in/4iSWjaP
SQL :- https://pdlink.in/3EyjUPt
Python :- https://pdlink.in/4c7hGDL
Web Dev :- https://bit.ly/4ffFnJZ
AI :- https://pdlink.in/4d0SrTG
Enroll For FREE & Get Certified ๐
Data Analytics :- https://pdlink.in/3Fq7E4p
Data Science :- https://pdlink.in/4iSWjaP
SQL :- https://pdlink.in/3EyjUPt
Python :- https://pdlink.in/4c7hGDL
Web Dev :- https://bit.ly/4ffFnJZ
AI :- https://pdlink.in/4d0SrTG
Enroll For FREE & Get Certified ๐
Software development is complex, and the fancy names don't help.
Hashing vs. Encryption vs. Encoding
๐๐ฎ๐๐ต๐ถ๐ป๐ด
This is a one-way process used for data integrity verification.
When you hash data, you get a unique string representing the original data.
It's a one-way street; once you hash something, you can't get the original data back from the hash.
While multiple values can theoretically yield the same hash, well-crafted cryptographic hash functions make such collisions incredibly rare and nearly impossible to compute.
This property makes it perfect for verifying if someone altered the data.
If even one-bit changes in the original data, the hash changes dramatically.
๐๐ป๐ฐ๐ฟ๐๐ฝ๐๐ถ๐ผ๐ป
This is the real deal when it comes to data security.
It uses algorithms and keys to transform readable data (plaintext) into an unreadable format (ciphertext).
Only those with the correct key can unlock (decrypt) the data and read it.
This process is reversible, unlike hashing.
Encryption is critical for protecting sensitive data from unauthorized access.
๐๐ป๐ฐ๐ผ๐ฑ๐ถ๐ป๐ด
This is all about data representation.
It converts data from one format to another, making it easier to interpret and display.
Common formats:
โข Base64
โข UTF-8
โข ASCII
Encoding does NOT provide security! It's for data transmission and storage convenience.
One common use of hashing is for secure password storage.
When you create an account or set a password, the system hashes and stores the password in the database.
During login, the system hashes the provided password and compares it to the stored hash without revealing the password.
Hashing vs. Encryption vs. Encoding
๐๐ฎ๐๐ต๐ถ๐ป๐ด
This is a one-way process used for data integrity verification.
When you hash data, you get a unique string representing the original data.
It's a one-way street; once you hash something, you can't get the original data back from the hash.
While multiple values can theoretically yield the same hash, well-crafted cryptographic hash functions make such collisions incredibly rare and nearly impossible to compute.
This property makes it perfect for verifying if someone altered the data.
If even one-bit changes in the original data, the hash changes dramatically.
๐๐ป๐ฐ๐ฟ๐๐ฝ๐๐ถ๐ผ๐ป
This is the real deal when it comes to data security.
It uses algorithms and keys to transform readable data (plaintext) into an unreadable format (ciphertext).
Only those with the correct key can unlock (decrypt) the data and read it.
This process is reversible, unlike hashing.
Encryption is critical for protecting sensitive data from unauthorized access.
๐๐ป๐ฐ๐ผ๐ฑ๐ถ๐ป๐ด
This is all about data representation.
It converts data from one format to another, making it easier to interpret and display.
Common formats:
โข Base64
โข UTF-8
โข ASCII
Encoding does NOT provide security! It's for data transmission and storage convenience.
One common use of hashing is for secure password storage.
When you create an account or set a password, the system hashes and stores the password in the database.
During login, the system hashes the provided password and compares it to the stored hash without revealing the password.
๐2โค1
๐๐ฅ๐๐ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐๐ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ฐ๐น๐ฎ๐๐ ๐๐ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐โ๐ ๐ฆ๐ฒ๐ป๐ถ๐ผ๐ฟ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐๐
Become an AI-Powered Engineer In 2025
๐๐ถ๐ด๐ต๐น๐ถ๐ด๐ต๐๐:-
- Build Real-World Agentic AI Systems
- Led by a Microsoft AI Specialist
- Live Q&A Sessions
๐๐น๐ถ๐ด๐ถ๐ฏ๐ถ๐น๐ถ๐๐ :- Best suited for engineers with 2+ years of work experience
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/4mu1ilf
Date & Time:- 1st June 2025, 11 AM (Sunday)
๐โโ๏ธLimited Slots โ Register Now!
Become an AI-Powered Engineer In 2025
๐๐ถ๐ด๐ต๐น๐ถ๐ด๐ต๐๐:-
- Build Real-World Agentic AI Systems
- Led by a Microsoft AI Specialist
- Live Q&A Sessions
๐๐น๐ถ๐ด๐ถ๐ฏ๐ถ๐น๐ถ๐๐ :- Best suited for engineers with 2+ years of work experience
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/4mu1ilf
Date & Time:- 1st June 2025, 11 AM (Sunday)
๐โโ๏ธLimited Slots โ Register Now!
โค2
๐ฐ ๐๐ฟ๐ฒ๐ฒ ๐ฃ๐๐๐ต๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ฆ๐๐ฎ๐ฟ๐ ๐๐ผ๐ฑ๐ถ๐ป๐ด ๐๐ถ๐ธ๐ฒ ๐ฎ ๐ฃ๐ฟ๐ผ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Looking to kickstart your coding journey with Python? ๐
Whether youโre an aspiring data analyst, a student, or preparing for tech roles, these free Python courses are perfect for beginners!๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jtpf9M
These platforms offer high-quality learning โ no fees, no catchโ ๏ธ
Looking to kickstart your coding journey with Python? ๐
Whether youโre an aspiring data analyst, a student, or preparing for tech roles, these free Python courses are perfect for beginners!๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jtpf9M
These platforms offer high-quality learning โ no fees, no catchโ ๏ธ
๐ง๐ผ๐ฝ ๐ ๐ก๐๐ ๐ข๐ณ๐ณ๐ฒ๐ฟ๐ถ๐ป๐ด ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐
Google :- https://pdlink.in/3H2YJX7
Microsoft :- https://pdlink.in/4iq8QlM
Infosys :- https://pdlink.in/4jsHZXf
IBM :- https://pdlink.in/3QyJyqk
Cisco :- https://pdlink.in/4fYr1xO
Enroll For FREE & Get Certified ๐
Google :- https://pdlink.in/3H2YJX7
Microsoft :- https://pdlink.in/4iq8QlM
Infosys :- https://pdlink.in/4jsHZXf
IBM :- https://pdlink.in/3QyJyqk
Cisco :- https://pdlink.in/4fYr1xO
Enroll For FREE & Get Certified ๐
9 tips to get better at debugging code:
Read error messages carefully โ they often tell you everything
Use print/log statements to trace code execution
Check one small part at a time
Reproduce the bug consistently
Use a debugger to step through code line by line
Compare working vs broken code
Check for typos, null values, and off-by-one errors
Rubber duck debugging โ explain your code out loud
Take breaks โ fresh eyes spot bugs faster
Coding Interview Resources:๐ https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
ENJOY LEARNING ๐๐
Read error messages carefully โ they often tell you everything
Use print/log statements to trace code execution
Check one small part at a time
Reproduce the bug consistently
Use a debugger to step through code line by line
Compare working vs broken code
Check for typos, null values, and off-by-one errors
Rubber duck debugging โ explain your code out loud
Take breaks โ fresh eyes spot bugs faster
Coding Interview Resources:๐ https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
ENJOY LEARNING ๐๐
โค1
Here are some interview preparation tips ๐๐
Technical Interview
1. Review Core Concepts:
- Data Structures: Be comfortable with LinkedLists, Trees, Graphs, and their representations.
- Algorithms: Brush up on searching and sorting algorithms, time complexities, and common algorithms (like Dijkstraโs or A*).
- Programming Languages: Ensure you understand the language you are most comfortable with (e.g., C++, Java, Python) and know its standard library functions.
2. Practice Coding Problems:
- Utilize platforms like LeetCode, HackerRank, or CodeSignal to practice medium-level coding questions. Focus on common patterns and problem-solving strategies.
3. Mock Interviews: Conduct mock technical interviews with peers or mentors to build confidence and receive feedback.
Personal Interview
1. Prepare Your Story:
- Outline your educational journey, achievements, and any relevant projects. Emphasize experiences that demonstrate leadership, teamwork, and problem-solving skills.
- Be ready to discuss your challenges and how you overcame them.
2. Articulate Your Goals:
- Be clear about why you want to join the program and how it aligns with your career aspirations. Reflect on what you hope to gain from the experience.
- Focus on Fundamentals:
Be thorough with basic subjects like Operating Systems, Networking, OOP, and Databases. Clear concepts are key for technical interviews.
2. Common Interview Questions:
DSA:
- Implement various data structures like Linked Lists, Trees, Graphs, Stacks, and Queues.
- Understand searching and sorting algorithms: Binary Search, Merge Sort, Quick Sort, etc.
- Solve problems involving HashMaps, Sets, and other collections.
Sample DSA Questions
- Reverse a linked list.
- Find the first non-repeating character in a string.
- Detect a cycle in a graph.
- Implement a queue using two stacks.
- Find the lowest common ancestor in a binary tree.
3. Key Topics to Focus On
DSA:
- Arrays, Strings, Linked Lists, Trees, Graphs
- Recursion, Backtracking, Dynamic Programming
- Sorting and Searching Algorithms
- Time and Space Complexity
Core Subjects
- Operating Systems: Concepts like processes, threads, deadlocks, concurrency, and memory management.
- Database Management Systems (DBMS): Understanding SQL, Normalization, and database design.
- Object-Oriented Programming (OOP): Know about inheritance, polymorphism, encapsulation, and design patterns.
5. Tips
- Optimize Your Code: Write clean, optimized code. Discuss time and space complexities during interviews.
- Review Your Projects: Be ready to explain your past projects, the challenges you faced, and the technologies you used.....
Best Programming Resources: https://topmate.io/coding/898340
All the best ๐๐
Technical Interview
1. Review Core Concepts:
- Data Structures: Be comfortable with LinkedLists, Trees, Graphs, and their representations.
- Algorithms: Brush up on searching and sorting algorithms, time complexities, and common algorithms (like Dijkstraโs or A*).
- Programming Languages: Ensure you understand the language you are most comfortable with (e.g., C++, Java, Python) and know its standard library functions.
2. Practice Coding Problems:
- Utilize platforms like LeetCode, HackerRank, or CodeSignal to practice medium-level coding questions. Focus on common patterns and problem-solving strategies.
3. Mock Interviews: Conduct mock technical interviews with peers or mentors to build confidence and receive feedback.
Personal Interview
1. Prepare Your Story:
- Outline your educational journey, achievements, and any relevant projects. Emphasize experiences that demonstrate leadership, teamwork, and problem-solving skills.
- Be ready to discuss your challenges and how you overcame them.
2. Articulate Your Goals:
- Be clear about why you want to join the program and how it aligns with your career aspirations. Reflect on what you hope to gain from the experience.
- Focus on Fundamentals:
Be thorough with basic subjects like Operating Systems, Networking, OOP, and Databases. Clear concepts are key for technical interviews.
2. Common Interview Questions:
DSA:
- Implement various data structures like Linked Lists, Trees, Graphs, Stacks, and Queues.
- Understand searching and sorting algorithms: Binary Search, Merge Sort, Quick Sort, etc.
- Solve problems involving HashMaps, Sets, and other collections.
Sample DSA Questions
- Reverse a linked list.
- Find the first non-repeating character in a string.
- Detect a cycle in a graph.
- Implement a queue using two stacks.
- Find the lowest common ancestor in a binary tree.
3. Key Topics to Focus On
DSA:
- Arrays, Strings, Linked Lists, Trees, Graphs
- Recursion, Backtracking, Dynamic Programming
- Sorting and Searching Algorithms
- Time and Space Complexity
Core Subjects
- Operating Systems: Concepts like processes, threads, deadlocks, concurrency, and memory management.
- Database Management Systems (DBMS): Understanding SQL, Normalization, and database design.
- Object-Oriented Programming (OOP): Know about inheritance, polymorphism, encapsulation, and design patterns.
5. Tips
- Optimize Your Code: Write clean, optimized code. Discuss time and space complexities during interviews.
- Review Your Projects: Be ready to explain your past projects, the challenges you faced, and the technologies you used.....
Best Programming Resources: https://topmate.io/coding/898340
All the best ๐๐
โค1
๐๐ฅ๐๐ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ ๐ง๐ฒ๐ฐ๐ต ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
๐ Learn In-Demand Tech Skills for Free โ Certified by Microsoft!
These free Microsoft-certified online courses are perfect for beginners, students, and professionals looking to upskill
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Hio2Vg
Enroll For FREE & Get Certified๐๏ธ
๐ Learn In-Demand Tech Skills for Free โ Certified by Microsoft!
These free Microsoft-certified online courses are perfect for beginners, students, and professionals looking to upskill
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Hio2Vg
Enroll For FREE & Get Certified๐๏ธ
โค1
๐๐ฅ๐๐ ๐ง๐๐ง๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ฉ๐ถ๐ฟ๐๐๐ฎ๐น ๐๐ป๐๐ฒ๐ฟ๐ป๐๐ต๐ถ๐ฝ๐
Gain Real-World Data Analytics Experience with TATA โ 100% Free!
This free TATA Data Analytics Virtual Internship on Forage lets you step into the shoes of a data analyst โ no experience required!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FyjDgp
Enroll For FREE & Get Certified๐๏ธ
Gain Real-World Data Analytics Experience with TATA โ 100% Free!
This free TATA Data Analytics Virtual Internship on Forage lets you step into the shoes of a data analyst โ no experience required!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FyjDgp
Enroll For FREE & Get Certified๐๏ธ
โค1
๐ฐ ๐ฃ๐ผ๐๐ฒ๐ฟ๐ณ๐๐น ๐๐ฟ๐ฒ๐ฒ ๐ฅ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ๐ ๐๐ผ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐๐ฎ๐๐ฎ๐ฆ๐ฐ๐ฟ๐ถ๐ฝ๐, ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ, ๐๐/๐ ๐ & ๐๐ฟ๐ผ๐ป๐๐ฒ๐ป๐ฑ ๐๐ฒ๐๐ฒ๐น๐ผ๐ฝ๐บ๐ฒ๐ป๐ ๐
Learn Tech the Smart Way: Step-by-Step Roadmaps for Beginners๐
Learning tech doesnโt have to be overwhelmingโespecially when you have a roadmap to guide you!๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45wfx2V
Enjoy Learning โ ๏ธ
Learn Tech the Smart Way: Step-by-Step Roadmaps for Beginners๐
Learning tech doesnโt have to be overwhelmingโespecially when you have a roadmap to guide you!๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45wfx2V
Enjoy Learning โ ๏ธ
โค2
Let's now understand Data Science Roadmap in detail:
1. Math & Statistics (Foundation Layer)
This is the backbone of data science. Strong intuition here helps with algorithms, ML, and interpreting results.
Key Topics:
Linear Algebra: Vectors, matrices, matrix operations
Calculus: Derivatives, gradients (for optimization)
Probability: Bayes theorem, probability distributions
Statistics: Mean, median, mode, standard deviation, hypothesis testing, confidence intervals
Inferential Statistics: p-values, t-tests, ANOVA
Resources:
Khan Academy (Math & Stats)
"Think Stats" book
YouTube (StatQuest with Josh Starmer)
2. Python or R (Pick One for Analysis)
These are your main tools. Python is more popular in industry; R is strong in academia.
For Python Learn:
Variables, loops, functions, list comprehension
Libraries: NumPy, Pandas, Matplotlib, Seaborn
For R Learn:
Vectors, data frames, ggplot2, dplyr, tidyr
Goal: Be comfortable working with data, writing clean code, and doing basic analysis.
3. Data Wrangling (Data Cleaning & Manipulation)
Real-world data is messy. Cleaning and structuring it is essential.
What to Learn:
Handling missing values
Removing duplicates
String operations
Date and time operations
Merging and joining datasets
Reshaping data (pivot, melt)
Tools:
Python: Pandas
R: dplyr, tidyr
Mini Projects: Clean a messy CSV or scrape and structure web data.
4. Data Visualization (Telling the Story)
This is about showing insights visually for business users or stakeholders.
In Python:
Matplotlib, Seaborn, Plotly
In R:
ggplot2, plotly
Learn To:
Create bar plots, histograms, scatter plots, box plots
Design dashboards (can explore Power BI or Tableau)
Use color and layout to enhance clarity
5. Machine Learning (ML)
Now the real fun begins! Automate predictions and classifications.
Topics:
Supervised Learning: Linear Regression, Logistic Regression, Decision Trees, Random Forests, SVM
Unsupervised Learning: Clustering (K-means), PCA
Model Evaluation: Accuracy, Precision, Recall, F1-score, ROC-AUC
Cross-validation, Hyperparameter tuning
Libraries:
scikit-learn, xgboost
Practice On:
Kaggle datasets, Titanic survival, House price prediction
6. Deep Learning & NLP (Advanced Level)
Push your skills to the next level. Essential for AI, image, and text-based tasks.
Deep Learning:
Neural Networks, CNNs, RNNs
Frameworks: TensorFlow, Keras, PyTorch
NLP (Natural Language Processing):
Text preprocessing (tokenization, stemming, lemmatization)
TF-IDF, Word Embeddings
Sentiment Analysis, Topic Modeling
Transformers (BERT, GPT, etc.)
Projects:
Sentiment analysis from Twitter data
Image classifier using CNN
7. Projects (Build Your Portfolio)
Apply everything you've learned to real-world datasets.
Types of Projects:
EDA + ML project on a domain (finance, health, sports)
End-to-end ML pipeline
Deep Learning project (image or text)
Build a dashboard with your insights
Collaborate on GitHub, contribute to open-source
Tips:
Host projects on GitHub
Write about them on Medium, LinkedIn, or personal blog
8. โ Apply for Jobs (You're Ready!)
Now, you're prepared to apply with confidence.
Steps:
Prepare your resume tailored for DS roles
Sharpen interview skills (SQL, Python, case studies)
Practice on LeetCode, InterviewBit
Network on LinkedIn, attend meetups
Apply for internships or entry-level DS/DA roles
Keep learning and adapting. Data Science is vast and fast-movingโstay updated via newsletters, GitHub, and communities like Kaggle or Reddit.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
Hope this helps you ๐
1. Math & Statistics (Foundation Layer)
This is the backbone of data science. Strong intuition here helps with algorithms, ML, and interpreting results.
Key Topics:
Linear Algebra: Vectors, matrices, matrix operations
Calculus: Derivatives, gradients (for optimization)
Probability: Bayes theorem, probability distributions
Statistics: Mean, median, mode, standard deviation, hypothesis testing, confidence intervals
Inferential Statistics: p-values, t-tests, ANOVA
Resources:
Khan Academy (Math & Stats)
"Think Stats" book
YouTube (StatQuest with Josh Starmer)
2. Python or R (Pick One for Analysis)
These are your main tools. Python is more popular in industry; R is strong in academia.
For Python Learn:
Variables, loops, functions, list comprehension
Libraries: NumPy, Pandas, Matplotlib, Seaborn
For R Learn:
Vectors, data frames, ggplot2, dplyr, tidyr
Goal: Be comfortable working with data, writing clean code, and doing basic analysis.
3. Data Wrangling (Data Cleaning & Manipulation)
Real-world data is messy. Cleaning and structuring it is essential.
What to Learn:
Handling missing values
Removing duplicates
String operations
Date and time operations
Merging and joining datasets
Reshaping data (pivot, melt)
Tools:
Python: Pandas
R: dplyr, tidyr
Mini Projects: Clean a messy CSV or scrape and structure web data.
4. Data Visualization (Telling the Story)
This is about showing insights visually for business users or stakeholders.
In Python:
Matplotlib, Seaborn, Plotly
In R:
ggplot2, plotly
Learn To:
Create bar plots, histograms, scatter plots, box plots
Design dashboards (can explore Power BI or Tableau)
Use color and layout to enhance clarity
5. Machine Learning (ML)
Now the real fun begins! Automate predictions and classifications.
Topics:
Supervised Learning: Linear Regression, Logistic Regression, Decision Trees, Random Forests, SVM
Unsupervised Learning: Clustering (K-means), PCA
Model Evaluation: Accuracy, Precision, Recall, F1-score, ROC-AUC
Cross-validation, Hyperparameter tuning
Libraries:
scikit-learn, xgboost
Practice On:
Kaggle datasets, Titanic survival, House price prediction
6. Deep Learning & NLP (Advanced Level)
Push your skills to the next level. Essential for AI, image, and text-based tasks.
Deep Learning:
Neural Networks, CNNs, RNNs
Frameworks: TensorFlow, Keras, PyTorch
NLP (Natural Language Processing):
Text preprocessing (tokenization, stemming, lemmatization)
TF-IDF, Word Embeddings
Sentiment Analysis, Topic Modeling
Transformers (BERT, GPT, etc.)
Projects:
Sentiment analysis from Twitter data
Image classifier using CNN
7. Projects (Build Your Portfolio)
Apply everything you've learned to real-world datasets.
Types of Projects:
EDA + ML project on a domain (finance, health, sports)
End-to-end ML pipeline
Deep Learning project (image or text)
Build a dashboard with your insights
Collaborate on GitHub, contribute to open-source
Tips:
Host projects on GitHub
Write about them on Medium, LinkedIn, or personal blog
8. โ Apply for Jobs (You're Ready!)
Now, you're prepared to apply with confidence.
Steps:
Prepare your resume tailored for DS roles
Sharpen interview skills (SQL, Python, case studies)
Practice on LeetCode, InterviewBit
Network on LinkedIn, attend meetups
Apply for internships or entry-level DS/DA roles
Keep learning and adapting. Data Science is vast and fast-movingโstay updated via newsletters, GitHub, and communities like Kaggle or Reddit.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
Hope this helps you ๐
โค1