๐๐ผ๐ผ๐ด๐น๐ฒ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
Learn AI for FREE with these incredible courses by Google!
Whether youโre a beginner or looking to sharpen your skills, these resources will help you stay ahead in the tech game.
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/3FYbfGR
Enroll For FREE & Get Certified๐
Learn AI for FREE with these incredible courses by Google!
Whether youโre a beginner or looking to sharpen your skills, these resources will help you stay ahead in the tech game.
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/3FYbfGR
Enroll For FREE & Get Certified๐
๐๐ฅ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ ๐ฃ๐ฟ๐ฒ๐๐ถ๐ฒ๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
- Data Analytics
- Python
- SQL
- Excel
- Data Science
- AI
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/41VIuSA
Enroll Now & Get a course completion certificate๐
- Data Analytics
- Python
- SQL
- Excel
- Data Science
- AI
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/41VIuSA
Enroll Now & Get a course completion certificate๐
๐2
๐ฐ ๐๐ฅ๐๐ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
These free, Microsoft-backed courses are a game-changer!
With these resources, youโll gain the skills and confidence needed to shine in the data analytics worldโall without spending a penny.
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4jpmI0I
Enroll For FREE & Get Certified๐
These free, Microsoft-backed courses are a game-changer!
With these resources, youโll gain the skills and confidence needed to shine in the data analytics worldโall without spending a penny.
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4jpmI0I
Enroll For FREE & Get Certified๐
๐1
Data Scientist Roadmap
|
|-- 1. Basic Foundations
| |-- a. Mathematics
| | |-- i. Linear Algebra
| | |-- ii. Calculus
| | |-- iii. Probability
| | `-- iv. Statistics
| |
| |-- b. Programming
| | |-- i. Python
| | | |-- 1. Syntax and Basic Concepts
| | | |-- 2. Data Structures
| | | |-- 3. Control Structures
| | | |-- 4. Functions
| | | `-- 5. Object-Oriented Programming
| | |
| | `-- ii. R (optional, based on preference)
| |
| |-- c. Data Manipulation
| | |-- i. Numpy (Python)
| | |-- ii. Pandas (Python)
| | `-- iii. Dplyr (R)
| |
| `-- d. Data Visualization
| |-- i. Matplotlib (Python)
| |-- ii. Seaborn (Python)
| `-- iii. ggplot2 (R)
|
|-- 2. Data Exploration and Preprocessing
| |-- a. Exploratory Data Analysis (EDA)
| |-- b. Feature Engineering
| |-- c. Data Cleaning
| |-- d. Handling Missing Data
| `-- e. Data Scaling and Normalization
|
|-- 3. Machine Learning
| |-- a. Supervised Learning
| | |-- i. Regression
| | | |-- 1. Linear Regression
| | | `-- 2. Polynomial Regression
| | |
| | `-- ii. Classification
| | |-- 1. Logistic Regression
| | |-- 2. k-Nearest Neighbors
| | |-- 3. Support Vector Machines
| | |-- 4. Decision Trees
| | `-- 5. Random Forest
| |
| |-- b. Unsupervised Learning
| | |-- i. Clustering
| | | |-- 1. K-means
| | | |-- 2. DBSCAN
| | | `-- 3. Hierarchical Clustering
| | |
| | `-- ii. Dimensionality Reduction
| | |-- 1. Principal Component Analysis (PCA)
| | |-- 2. t-Distributed Stochastic Neighbor Embedding (t-SNE)
| | `-- 3. Linear Discriminant Analysis (LDA)
| |
| |-- c. Reinforcement Learning
| |-- d. Model Evaluation and Validation
| | |-- i. Cross-validation
| | |-- ii. Hyperparameter Tuning
| | `-- iii. Model Selection
| |
| `-- e. ML Libraries and Frameworks
| |-- i. Scikit-learn (Python)
| |-- ii. TensorFlow (Python)
| |-- iii. Keras (Python)
| `-- iv. PyTorch (Python)
|
|-- 4. Deep Learning
| |-- a. Neural Networks
| | |-- i. Perceptron
| | `-- ii. Multi-Layer Perceptron
| |
| |-- b. Convolutional Neural Networks (CNNs)
| | |-- i. Image Classification
| | |-- ii. Object Detection
| | `-- iii. Image Segmentation
| |
| |-- c. Recurrent Neural Networks (RNNs)
| | |-- i. Sequence-to-Sequence Models
| | |-- ii. Text Classification
| | `-- iii. Sentiment Analysis
| |
| |-- d. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)
| | |-- i. Time Series Forecasting
| | `-- ii. Language Modeling
| |
| `-- e. Generative Adversarial Networks (GANs)
| |-- i. Image Synthesis
| |-- ii. Style Transfer
| `-- iii. Data Augmentation
|
|-- 5. Big Data Technologies
| |-- a. Hadoop
| | |-- i. HDFS
| | `-- ii. MapReduce
| |
| |-- b. Spark
| | |-- i. RDDs
| | |-- ii. DataFrames
| | `-- iii. MLlib
| |
| `-- c. NoSQL Databases
| |-- i. MongoDB
| |-- ii. Cassandra
| |-- iii. HBase
| `-- iv. Couchbase
|
|-- 6. Data Visualization and Reporting
| |-- a. Dashboarding Tools
| | |-- i. Tableau
| | |-- ii. Power BI
| | |-- iii. Dash (Python)
| | `-- iv. Shiny (R)
| |
| |-- b. Storytelling with Data
| `-- c. Effective Communication
|
|-- 7. Domain Knowledge and Soft Skills
| |-- a. Industry-specific Knowledge
| |-- b. Problem-solving
| |-- c. Communication Skills
| |-- d. Time Management
| `-- e. Teamwork
|
`-- 8. Staying Updated and Continuous Learning
|-- a. Online Courses
|-- b. Books and Research Papers
|-- c. Blogs and Podcasts
|-- d. Conferences and Workshops
`-- e. Networking and Community Engagement
|
|-- 1. Basic Foundations
| |-- a. Mathematics
| | |-- i. Linear Algebra
| | |-- ii. Calculus
| | |-- iii. Probability
| | `-- iv. Statistics
| |
| |-- b. Programming
| | |-- i. Python
| | | |-- 1. Syntax and Basic Concepts
| | | |-- 2. Data Structures
| | | |-- 3. Control Structures
| | | |-- 4. Functions
| | | `-- 5. Object-Oriented Programming
| | |
| | `-- ii. R (optional, based on preference)
| |
| |-- c. Data Manipulation
| | |-- i. Numpy (Python)
| | |-- ii. Pandas (Python)
| | `-- iii. Dplyr (R)
| |
| `-- d. Data Visualization
| |-- i. Matplotlib (Python)
| |-- ii. Seaborn (Python)
| `-- iii. ggplot2 (R)
|
|-- 2. Data Exploration and Preprocessing
| |-- a. Exploratory Data Analysis (EDA)
| |-- b. Feature Engineering
| |-- c. Data Cleaning
| |-- d. Handling Missing Data
| `-- e. Data Scaling and Normalization
|
|-- 3. Machine Learning
| |-- a. Supervised Learning
| | |-- i. Regression
| | | |-- 1. Linear Regression
| | | `-- 2. Polynomial Regression
| | |
| | `-- ii. Classification
| | |-- 1. Logistic Regression
| | |-- 2. k-Nearest Neighbors
| | |-- 3. Support Vector Machines
| | |-- 4. Decision Trees
| | `-- 5. Random Forest
| |
| |-- b. Unsupervised Learning
| | |-- i. Clustering
| | | |-- 1. K-means
| | | |-- 2. DBSCAN
| | | `-- 3. Hierarchical Clustering
| | |
| | `-- ii. Dimensionality Reduction
| | |-- 1. Principal Component Analysis (PCA)
| | |-- 2. t-Distributed Stochastic Neighbor Embedding (t-SNE)
| | `-- 3. Linear Discriminant Analysis (LDA)
| |
| |-- c. Reinforcement Learning
| |-- d. Model Evaluation and Validation
| | |-- i. Cross-validation
| | |-- ii. Hyperparameter Tuning
| | `-- iii. Model Selection
| |
| `-- e. ML Libraries and Frameworks
| |-- i. Scikit-learn (Python)
| |-- ii. TensorFlow (Python)
| |-- iii. Keras (Python)
| `-- iv. PyTorch (Python)
|
|-- 4. Deep Learning
| |-- a. Neural Networks
| | |-- i. Perceptron
| | `-- ii. Multi-Layer Perceptron
| |
| |-- b. Convolutional Neural Networks (CNNs)
| | |-- i. Image Classification
| | |-- ii. Object Detection
| | `-- iii. Image Segmentation
| |
| |-- c. Recurrent Neural Networks (RNNs)
| | |-- i. Sequence-to-Sequence Models
| | |-- ii. Text Classification
| | `-- iii. Sentiment Analysis
| |
| |-- d. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)
| | |-- i. Time Series Forecasting
| | `-- ii. Language Modeling
| |
| `-- e. Generative Adversarial Networks (GANs)
| |-- i. Image Synthesis
| |-- ii. Style Transfer
| `-- iii. Data Augmentation
|
|-- 5. Big Data Technologies
| |-- a. Hadoop
| | |-- i. HDFS
| | `-- ii. MapReduce
| |
| |-- b. Spark
| | |-- i. RDDs
| | |-- ii. DataFrames
| | `-- iii. MLlib
| |
| `-- c. NoSQL Databases
| |-- i. MongoDB
| |-- ii. Cassandra
| |-- iii. HBase
| `-- iv. Couchbase
|
|-- 6. Data Visualization and Reporting
| |-- a. Dashboarding Tools
| | |-- i. Tableau
| | |-- ii. Power BI
| | |-- iii. Dash (Python)
| | `-- iv. Shiny (R)
| |
| |-- b. Storytelling with Data
| `-- c. Effective Communication
|
|-- 7. Domain Knowledge and Soft Skills
| |-- a. Industry-specific Knowledge
| |-- b. Problem-solving
| |-- c. Communication Skills
| |-- d. Time Management
| `-- e. Teamwork
|
`-- 8. Staying Updated and Continuous Learning
|-- a. Online Courses
|-- b. Books and Research Papers
|-- c. Blogs and Podcasts
|-- d. Conferences and Workshops
`-- e. Networking and Community Engagement
๐2
Build your career in Data & AI!
I just signed up for Hack the Future: A Gen AI Sprint Powered by Dataโa nationwide hackathon where you'll tackle real-world challenges using Data and AI. Itโs a golden opportunity to work with industry experts, participate in hands-on workshops, and win exciting prizes.
Highly recommended for working professionals looking to upskill or transition into the AI/Data space.
If you're looking to level up your skills, network with like-minded folks, and boost your career, don't miss out!
Register now: https://gfgcdn.com/tu/UO5/
I just signed up for Hack the Future: A Gen AI Sprint Powered by Dataโa nationwide hackathon where you'll tackle real-world challenges using Data and AI. Itโs a golden opportunity to work with industry experts, participate in hands-on workshops, and win exciting prizes.
Highly recommended for working professionals looking to upskill or transition into the AI/Data space.
If you're looking to level up your skills, network with like-minded folks, and boost your career, don't miss out!
Register now: https://gfgcdn.com/tu/UO5/
๐1
๐๐ฒ๐ฎ๐ฟ๐ป ๐ฃ๐ผ๐๐ฒ๐ฟ ๐๐ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ & ๐๐น๐ฒ๐๐ฎ๐๐ฒ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ต๐ฏ๐ผ๐ฎ๐ฟ๐ฑ ๐๐ฎ๐บ๐ฒ!๐
Want to turn raw data into stunning visual stories?๐
Here are 6 FREE Power BI courses thatโll take you from beginner to proโwithout spending a single rupee๐ฐ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4cwsGL2
Enjoy Learning โ ๏ธ
Want to turn raw data into stunning visual stories?๐
Here are 6 FREE Power BI courses thatโll take you from beginner to proโwithout spending a single rupee๐ฐ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4cwsGL2
Enjoy Learning โ ๏ธ
๐1
๐๐ฅ๐๐ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ฐ๐น๐ฎ๐๐ ๐ข๐ป ๐๐ฒ๐๐ผ๐ฝ๐๐
Get Started with DevOps Without Having to Learn Complex Coding
You donโt need to be a coder to break into DevOps.
๐๐น๐ถ๐ด๐ถ๐ฏ๐ถ๐น๐ถ๐๐ :- Students, Freshers & Working Professionals
๐๐๐ ๐ข๐ฌ๐ญ๐๐ซ ๐ ๐จ๐ซ ๐ ๐๐๐ ๐:-
https://pdlink.in/4iZ9Pe3
(Limited Slots Available โ Hurry Up!๐โโ๏ธ)
๐๐ฎ๐๐ฒ & ๐ง๐ถ๐บ๐ฒ:- April 9, 2025, at 7 PM
Get Started with DevOps Without Having to Learn Complex Coding
You donโt need to be a coder to break into DevOps.
๐๐น๐ถ๐ด๐ถ๐ฏ๐ถ๐น๐ถ๐๐ :- Students, Freshers & Working Professionals
๐๐๐ ๐ข๐ฌ๐ญ๐๐ซ ๐ ๐จ๐ซ ๐ ๐๐๐ ๐:-
https://pdlink.in/4iZ9Pe3
(Limited Slots Available โ Hurry Up!๐โโ๏ธ)
๐๐ฎ๐๐ฒ & ๐ง๐ถ๐บ๐ฒ:- April 9, 2025, at 7 PM
๐2
๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ถ๐๐ฒ ๐๐ ๐ฃ๐ฟ๐ฒ๐บ๐ถ๐๐บ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
Skills you will gain:-
- Introduction to GenAI
- Chatgpt
- Prompt design
- AI for business solutions
- Prompt Engineering
- Python
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/41VIuSA
Enroll Now & Get a course completion certificate๐
Skills you will gain:-
- Introduction to GenAI
- Chatgpt
- Prompt design
- AI for business solutions
- Prompt Engineering
- Python
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/41VIuSA
Enroll Now & Get a course completion certificate๐
๐2
Interview questions asked by top product-based companies.
A friend of mine recently shared their interview journey, and I'd like to pass on what I learned about the data structures and algorithms (DSA) rounds.
๐จ๐พโ๐ป Data Structures: He encountered questions on topics like arrays, strings, matrices, stacks, queues, and different types of linked lists (singly, doubly, and circular).
โถ๏ธ Algorithms: He was also interviewed on a wide array of algorithms like linear search, binary search, and sorting algorithms (bubble, quick, merge).
And faced questions on more challenging subjects like Greedy algorithms, Dynamic programming, and Graph algorithms.
๐ Specifics: The devil lies in the details! His interview also delved into advanced topics such as Advanced Data Structures, Pattern Searching, Recursion, Backtracking, and Divide and Conquer strategies.
However, your ability to apply these concepts to real-world situations will undoubtedly set you apart from others.
On top, If youโre stuck at any of the above questions and need the right guidance in cracking top product-based company interviews,
As a community of tech enthusiasts, let's share our own interview experiences in the comments below. Together, we can learn from each other's experiences.
A friend of mine recently shared their interview journey, and I'd like to pass on what I learned about the data structures and algorithms (DSA) rounds.
๐จ๐พโ๐ป Data Structures: He encountered questions on topics like arrays, strings, matrices, stacks, queues, and different types of linked lists (singly, doubly, and circular).
โถ๏ธ Algorithms: He was also interviewed on a wide array of algorithms like linear search, binary search, and sorting algorithms (bubble, quick, merge).
And faced questions on more challenging subjects like Greedy algorithms, Dynamic programming, and Graph algorithms.
๐ Specifics: The devil lies in the details! His interview also delved into advanced topics such as Advanced Data Structures, Pattern Searching, Recursion, Backtracking, and Divide and Conquer strategies.
However, your ability to apply these concepts to real-world situations will undoubtedly set you apart from others.
On top, If youโre stuck at any of the above questions and need the right guidance in cracking top product-based company interviews,
As a community of tech enthusiasts, let's share our own interview experiences in the comments below. Together, we can learn from each other's experiences.
๐3
๐๐ฐ๐ฐ๐ฒ๐ป๐๐๐ฟ๐ฒ ๐๐ฒ๐ป๐๐ ๐๐ฎ๐ฐ๐ธ๐ฎ๐๐ต๐ผ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ ๐
Hack the Future: Join the Data and AI Revolution
In collaboration with Accenture and with GeeksforGeeks as the Community Partner, this event offers a unique opportunity to collaborate, learn, and innovate.
Whether you're an AI engineer, business analyst, or someone passionate about building a career in Data and AI,
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4ipKRDz
With exciting cash prizes and networking opportunities, it's the perfect platform to join the Data and AI revolution.
Donโt miss outโbe part of shaping the future!
Hack the Future: Join the Data and AI Revolution
In collaboration with Accenture and with GeeksforGeeks as the Community Partner, this event offers a unique opportunity to collaborate, learn, and innovate.
Whether you're an AI engineer, business analyst, or someone passionate about building a career in Data and AI,
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4ipKRDz
With exciting cash prizes and networking opportunities, it's the perfect platform to join the Data and AI revolution.
Donโt miss outโbe part of shaping the future!
Top 10 important data science concepts
1. Data Cleaning: Data cleaning is the process of identifying and correcting or removing errors, inconsistencies, and inaccuracies in a dataset. It is a crucial step in the data science pipeline as it ensures the quality and reliability of the data.
2. Exploratory Data Analysis (EDA): EDA is the process of analyzing and visualizing data to gain insights and understand the underlying patterns and relationships. It involves techniques such as summary statistics, data visualization, and correlation analysis.
3. Feature Engineering: Feature engineering is the process of creating new features or transforming existing features in a dataset to improve the performance of machine learning models. It involves techniques such as encoding categorical variables, scaling numerical variables, and creating interaction terms.
4. Machine Learning Algorithms: Machine learning algorithms are mathematical models that learn patterns and relationships from data to make predictions or decisions. Some important machine learning algorithms include linear regression, logistic regression, decision trees, random forests, support vector machines, and neural networks.
5. Model Evaluation and Validation: Model evaluation and validation involve assessing the performance of machine learning models on unseen data. It includes techniques such as cross-validation, confusion matrix, precision, recall, F1 score, and ROC curve analysis.
6. Feature Selection: Feature selection is the process of selecting the most relevant features from a dataset to improve model performance and reduce overfitting. It involves techniques such as correlation analysis, backward elimination, forward selection, and regularization methods.
7. Dimensionality Reduction: Dimensionality reduction techniques are used to reduce the number of features in a dataset while preserving the most important information. Principal Component Analysis (PCA) and t-SNE (t-Distributed Stochastic Neighbor Embedding) are common dimensionality reduction techniques.
8. Model Optimization: Model optimization involves fine-tuning the parameters and hyperparameters of machine learning models to achieve the best performance. Techniques such as grid search, random search, and Bayesian optimization are used for model optimization.
9. Data Visualization: Data visualization is the graphical representation of data to communicate insights and patterns effectively. It involves using charts, graphs, and plots to present data in a visually appealing and understandable manner.
10. Big Data Analytics: Big data analytics refers to the process of analyzing large and complex datasets that cannot be processed using traditional data processing techniques. It involves technologies such as Hadoop, Spark, and distributed computing to extract insights from massive amounts of data.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/datasciencefun
Like if you need similar content ๐๐
Hope this helps you ๐
1. Data Cleaning: Data cleaning is the process of identifying and correcting or removing errors, inconsistencies, and inaccuracies in a dataset. It is a crucial step in the data science pipeline as it ensures the quality and reliability of the data.
2. Exploratory Data Analysis (EDA): EDA is the process of analyzing and visualizing data to gain insights and understand the underlying patterns and relationships. It involves techniques such as summary statistics, data visualization, and correlation analysis.
3. Feature Engineering: Feature engineering is the process of creating new features or transforming existing features in a dataset to improve the performance of machine learning models. It involves techniques such as encoding categorical variables, scaling numerical variables, and creating interaction terms.
4. Machine Learning Algorithms: Machine learning algorithms are mathematical models that learn patterns and relationships from data to make predictions or decisions. Some important machine learning algorithms include linear regression, logistic regression, decision trees, random forests, support vector machines, and neural networks.
5. Model Evaluation and Validation: Model evaluation and validation involve assessing the performance of machine learning models on unseen data. It includes techniques such as cross-validation, confusion matrix, precision, recall, F1 score, and ROC curve analysis.
6. Feature Selection: Feature selection is the process of selecting the most relevant features from a dataset to improve model performance and reduce overfitting. It involves techniques such as correlation analysis, backward elimination, forward selection, and regularization methods.
7. Dimensionality Reduction: Dimensionality reduction techniques are used to reduce the number of features in a dataset while preserving the most important information. Principal Component Analysis (PCA) and t-SNE (t-Distributed Stochastic Neighbor Embedding) are common dimensionality reduction techniques.
8. Model Optimization: Model optimization involves fine-tuning the parameters and hyperparameters of machine learning models to achieve the best performance. Techniques such as grid search, random search, and Bayesian optimization are used for model optimization.
9. Data Visualization: Data visualization is the graphical representation of data to communicate insights and patterns effectively. It involves using charts, graphs, and plots to present data in a visually appealing and understandable manner.
10. Big Data Analytics: Big data analytics refers to the process of analyzing large and complex datasets that cannot be processed using traditional data processing techniques. It involves technologies such as Hadoop, Spark, and distributed computing to extract insights from massive amounts of data.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/datasciencefun
Like if you need similar content ๐๐
Hope this helps you ๐
โค3
๐
๐๐๐ ๐๐๐ฌ๐ญ๐๐ซ๐๐ฅ๐๐ฌ๐ฌ ๐๐ง ๐๐๐ญ๐๐ฌ๐ญ ๐๐๐๐ก๐ง๐จ๐ฅ๐จ๐ ๐ข๐๐ฌ๐
- AI/ML
- Data Analytics
- Business Analytics
- Data Science
- Fullstack
- UI/UX
- DevOps
๐ 3 Steps to Build Future-Proof Your IT Career!
๐๐๐ ๐ข๐ฌ๐ญ๐๐ซ ๐๐จ๐ฐ ๐:-
https://pdlink.in/4j9x7Os
(Limited Slots ..HurryUp๐โโ๏ธ )
๐๐๐ญ๐ & ๐๐ข๐ฆ๐:-11th April 2025, at 7 PM
Don't Miss This Opportunity ๐ค
- AI/ML
- Data Analytics
- Business Analytics
- Data Science
- Fullstack
- UI/UX
- DevOps
๐ 3 Steps to Build Future-Proof Your IT Career!
๐๐๐ ๐ข๐ฌ๐ญ๐๐ซ ๐๐จ๐ฐ ๐:-
https://pdlink.in/4j9x7Os
(Limited Slots ..HurryUp๐โโ๏ธ )
๐๐๐ญ๐ & ๐๐ข๐ฆ๐:-11th April 2025, at 7 PM
Don't Miss This Opportunity ๐ค
โค1
๐ฉโ๐ซ๐งโ๐ซ PROGRAMMING LANGUAGES YOU SHOULD LEARN TO BECOME.
โ๏ธ[ Web Developer]
โ๏ธ[ Game Developer]
โ๏ธ[ Data Analysis]
โ๏ธ[ Desktop Developer]
โ๏ธ[ Embedded System Program]
โ๏ธ[Mobile Apps Development]
โ๏ธ[ Web Developer]
PHP, C#, JS, JAVA, Python, Ruby
โ๏ธ[ Game Developer]
Java, C++, Python, JS, Ruby, C, C#
โ๏ธ[ Data Analysis]
R, Matlab, Java, Python
โ๏ธ[ Desktop Developer]
Java, C#, C++, Python
โ๏ธ[ Embedded System Program]
C, Python, C++
โ๏ธ[Mobile Apps Development]
Kotlin, Dart, Objective-C, Java, Python, JS, Swift, C#
โค1๐1
๐๐ป๐ณ๐ผ๐๐๐ ๐ญ๐ฌ๐ฌ% ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
Infosys Springboard is offering a wide range of 100% free courses with certificates to help you upskill and boost your resumeโat no cost.
Whether youโre a student, graduate, or working professional, this platform has something valuable for everyone.
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4jsHZXf
Enroll For FREE & Get Certified ๐
Infosys Springboard is offering a wide range of 100% free courses with certificates to help you upskill and boost your resumeโat no cost.
Whether youโre a student, graduate, or working professional, this platform has something valuable for everyone.
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4jsHZXf
Enroll For FREE & Get Certified ๐
Complete Data Science Roadmap
๐๐
1. Introduction to Data Science
- Overview and Importance
- Data Science Lifecycle
- Key Roles (Data Scientist, Analyst, Engineer)
2. Mathematics and Statistics
- Probability and Distributions
- Descriptive/Inferential Statistics
- Hypothesis Testing
- Linear Algebra and Calculus Basics
3. Programming Languages
- Python: NumPy, Pandas, Matplotlib
- R: dplyr, ggplot2
- SQL: Joins, Aggregations, CRUD
4. Data Collection & Preprocessing
- Data Cleaning and Wrangling
- Handling Missing Data
- Feature Engineering
5. Exploratory Data Analysis (EDA)
- Summary Statistics
- Data Visualization (Histograms, Box Plots, Correlation)
6. Machine Learning
- Supervised (Linear/Logistic Regression, Decision Trees)
- Unsupervised (K-Means, PCA)
- Model Selection and Cross-Validation
7. Advanced Machine Learning
- SVM, Random Forests, Boosting
- Neural Networks Basics
8. Deep Learning
- Neural Networks Architecture
- CNNs for Image Data
- RNNs for Sequential Data
9. Natural Language Processing (NLP)
- Text Preprocessing
- Sentiment Analysis
- Word Embeddings (Word2Vec)
10. Data Visualization & Storytelling
- Dashboards (Tableau, Power BI)
- Telling Stories with Data
11. Model Deployment
- Deploy with Flask or Django
- Monitoring and Retraining Models
12. Big Data & Cloud
- Introduction to Hadoop, Spark
- Cloud Tools (AWS, Google Cloud)
13. Data Engineering Basics
- ETL Pipelines
- Data Warehousing (Redshift, BigQuery)
14. Ethics in Data Science
- Ethical Data Usage
- Bias in AI Models
15. Tools for Data Science
- Jupyter, Git, Docker
16. Career Path & Certifications
- Building a Data Science Portfolio
Like if you need similar content ๐๐
๐๐
1. Introduction to Data Science
- Overview and Importance
- Data Science Lifecycle
- Key Roles (Data Scientist, Analyst, Engineer)
2. Mathematics and Statistics
- Probability and Distributions
- Descriptive/Inferential Statistics
- Hypothesis Testing
- Linear Algebra and Calculus Basics
3. Programming Languages
- Python: NumPy, Pandas, Matplotlib
- R: dplyr, ggplot2
- SQL: Joins, Aggregations, CRUD
4. Data Collection & Preprocessing
- Data Cleaning and Wrangling
- Handling Missing Data
- Feature Engineering
5. Exploratory Data Analysis (EDA)
- Summary Statistics
- Data Visualization (Histograms, Box Plots, Correlation)
6. Machine Learning
- Supervised (Linear/Logistic Regression, Decision Trees)
- Unsupervised (K-Means, PCA)
- Model Selection and Cross-Validation
7. Advanced Machine Learning
- SVM, Random Forests, Boosting
- Neural Networks Basics
8. Deep Learning
- Neural Networks Architecture
- CNNs for Image Data
- RNNs for Sequential Data
9. Natural Language Processing (NLP)
- Text Preprocessing
- Sentiment Analysis
- Word Embeddings (Word2Vec)
10. Data Visualization & Storytelling
- Dashboards (Tableau, Power BI)
- Telling Stories with Data
11. Model Deployment
- Deploy with Flask or Django
- Monitoring and Retraining Models
12. Big Data & Cloud
- Introduction to Hadoop, Spark
- Cloud Tools (AWS, Google Cloud)
13. Data Engineering Basics
- ETL Pipelines
- Data Warehousing (Redshift, BigQuery)
14. Ethics in Data Science
- Ethical Data Usage
- Bias in AI Models
15. Tools for Data Science
- Jupyter, Git, Docker
16. Career Path & Certifications
- Building a Data Science Portfolio
Like if you need similar content ๐๐
๐4
๐ฑ ๐๐ฅ๐๐ ๐ง๐ฒ๐ฐ๐ต ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ฟ๐ผ๐บ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐, ๐๐ช๐ฆ, ๐๐๐ , ๐๐ถ๐๐ฐ๐ผ, ๐ฎ๐ป๐ฑ ๐ฆ๐๐ฎ๐ป๐ณ๐ผ๐ฟ๐ฑ. ๐
- Python
- Artificial Intelligence,
- Cybersecurity
- Cloud Computing, and
- Machine Learning
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/3E2wYNr
Enroll For FREE & Get Certified ๐
- Python
- Artificial Intelligence,
- Cybersecurity
- Cloud Computing, and
- Machine Learning
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/3E2wYNr
Enroll For FREE & Get Certified ๐
5 Handy Tips to Master Data Science โฌ๏ธ
1๏ธโฃ Begin with introductory projects that cover the fundamental concepts of data science, such as data exploration, cleaning, and visualization. These projects will help you get familiar with common data science tools and libraries like Python (Pandas, NumPy, Matplotlib), R, SQL, and Excel
2๏ธโฃ Look for publicly available datasets from sources like Kaggle, UCI Machine Learning Repository. Working with real-world data will expose you to the challenges of messy, incomplete, and heterogeneous data, which is common in practical scenarios.
3๏ธโฃ Explore various data science techniques like regression, classification, clustering, and time series analysis. Apply these techniques to different datasets and domains to gain a broader understanding of their strengths, weaknesses, and appropriate use cases.
4๏ธโฃ Work on projects that involve the entire data science lifecycle, from data collection and cleaning to model building, evaluation, and deployment. This will help you understand how different components of the data science process fit together.
5๏ธโฃ Consistent practice is key to mastering any skill. Set aside dedicated time to work on data science projects, and gradually increase the complexity and scope of your projects as you gain more experience.
1๏ธโฃ Begin with introductory projects that cover the fundamental concepts of data science, such as data exploration, cleaning, and visualization. These projects will help you get familiar with common data science tools and libraries like Python (Pandas, NumPy, Matplotlib), R, SQL, and Excel
2๏ธโฃ Look for publicly available datasets from sources like Kaggle, UCI Machine Learning Repository. Working with real-world data will expose you to the challenges of messy, incomplete, and heterogeneous data, which is common in practical scenarios.
3๏ธโฃ Explore various data science techniques like regression, classification, clustering, and time series analysis. Apply these techniques to different datasets and domains to gain a broader understanding of their strengths, weaknesses, and appropriate use cases.
4๏ธโฃ Work on projects that involve the entire data science lifecycle, from data collection and cleaning to model building, evaluation, and deployment. This will help you understand how different components of the data science process fit together.
5๏ธโฃ Consistent practice is key to mastering any skill. Set aside dedicated time to work on data science projects, and gradually increase the complexity and scope of your projects as you gain more experience.
๐2โค1
๐๐ฅ๐๐ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ฐ๐น๐ฎ๐๐ ๐ข๐ป ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ( ๐๐๐๐ถ๐ป๐ฒ๐๐ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐)๐
Learn the Latest 5 Analytics Tools in 2025
Learn Essential skills to stay competitive in the evolving job market
Eligibility :- Students ,Graduates & Working Professionals
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐ ๐:-
https://pdlink.in/3YfLLv9
(Limited Slots ..HurryUp๐โโ๏ธ )
๐๐๐ญ๐ & ๐๐ข๐ฆ๐:-12th April 2025, at 7 PM
Learn the Latest 5 Analytics Tools in 2025
Learn Essential skills to stay competitive in the evolving job market
Eligibility :- Students ,Graduates & Working Professionals
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐ ๐:-
https://pdlink.in/3YfLLv9
(Limited Slots ..HurryUp๐โโ๏ธ )
๐๐๐ญ๐ & ๐๐ข๐ฆ๐:-12th April 2025, at 7 PM
๐1