Artificial Intelligence & ChatGPT Prompts
40.6K subscribers
667 photos
5 videos
319 files
561 links
πŸ”“Unlock Your Coding Potential with ChatGPT
πŸš€ Your Ultimate Guide to Ace Coding Interviews!
πŸ’» Coding tips, practice questions, and expert advice to land your dream tech job.


For Promotions: @love_data
Download Telegram
Artificial Intelligence for Robotics.epub
24 MB
Artificial Intelligence for Robotics
Francis X. Govers, 2018
Ultimate ChatGPT Handbook for Enterprises.pdf
18.3 MB
Ultimate ChatGPT Handbook for Enterprises
Harald Gunia, 2024
πŸ‘8
Artificial intelligence can change your career by 180 degrees! πŸ“Œ

Here's how you can start with AI engineering with zero experience!

The simplest definition of artificial intelligence|

Artificial intelligence (AI) is a part of computer science that creates smart systems to solve problems usually needing human intelligence.

AI includes tasks like recognizing objects and patterns, understanding voices, making predictions, and more.

Step 1: Master the prerequisites

Basics of programming
Probability and statistics essentials
Data structures
Data analysis essentials

Step 2: Get into machine learning and deep learning

Basics of data science, an intersection field
Feature engineering and machine learning
Neural networks and deep learning
Scikit-learn for machine learning along with Numpy, Pandas and matplotlib
TensorFlow, Keras and PyTorch for deep learning

Step 3: Exploring Generative Adversarial Networks (GANs)

Learn GAN fundamentals: Understand the theory behind GANs, including how the generator and discriminator work together to produce realistic data.

Hands-on projects: Build and train simple GANs using PyTorch or TensorFlow to generate images, enhance resolution, or perform style transfer.

Step 4: Get into Transformers architecture

Grasp the basics: Study the Transformer architecture's key concepts, including attention mechanisms, positional encodings, and the encoder-decoder structure.
Implementations: Use libraries like Hugging Face’s Transformers to experiment with different Transformer models, such as GPT and BERT, on NLP tasks.

Step 5: Working with Pre-trained Large Language Models

Utilize existing models: Learn how to leverage pre-trained models from libraries like Hugging Face to perform tasks like text generation, translation, and sentiment analysis.

Fine-tuning techniques: Explore strategies for fine-tuning these models on domain-specific datasets to improve performance and relevance.

Step 6: Introduction to LangChain

Understand LangChain: Familiarize yourself with LangChain, a framework designed to build applications that combine language models with external knowledge and capabilities.

Build applications: Use LangChain to develop applications that interactively use language models to process and generate information based on user queries or tasks.

Step 7: Leveraging Vector Databases

Basics of vector databases: Understand what vector databases are and why they are crucial for managing high-dimensional data typically used in AI models.
Tools and technologies: Learn to use vector databases like Milvus, Pinecone, or Weaviate, which are optimized for fast similarity search and efficient handling of vector embeddings.
Practical application: Integrate vector databases into your projects for enhanced search functionalities

Step 8: Exploration of Retrieval-Augmented Generation (RAG)

Learn the RAG approach: Understand how RAG models combine the power of retrieval (extracting information from a large database) with generative models to enhance the quality and relevance of the outputs.

Practical applications: Study case studies or research papers that showcase the use of RAG in real-world applications.

Step 9: Deployment of AI Projects

Deployment tools: Learn to use tools like Docker for containerization, Kubernetes for orchestration, and cloud services (AWS, Azure, Google Cloud) for deploying models.

Monitoring and maintenance: Understand the importance of monitoring AI systems post-deployment and how to use tools like Prometheus, Grafana, and Elastic Stack for performance tracking and logging.

Step 10: Keep building

Implement Projects and Gain Practical Experience

Work on diverse projects: Apply your knowledge to solve problems across different domains using AI, such as natural language processing, computer vision, and speech recognition.

Contribute to open-source: Participate in AI projects and contribute to open-source communities to gain experience and collaborate with others.

Hope this helps you ☺️
πŸ‘21❀2
Google Gemini Unleashed (Fa_ (Z-Library).epub
2.5 MB
Google Gemini Unleashed
Natenapis Faraksa, 2024
πŸ‘13
HOW TO AVOID YOUR ADULT PROBELMS??

β€’ Wake up early.
β€’ Work out regularly.
β€’ Eat good, real food.
β€’ Live below your means.
β€’ Find real friends with similar goals.
β€’ Have more than 1 source of income.
β€’ Do what you love for work
β€’ Don't get into meaningless relationships.
β€’ Stop hitting the snooze button.
β€’ Create a routine.
β€’ Write down a plan.

https://t.iss.one/HealthFitnessGymTips
πŸ‘20
The most popular programming languages:

1. Python
2. TypeScript
3. JavaScript
4. C#
5. HTML
6. Rust
7. C++
8. C
9. Go
10. Lua
11. Kotlin
12. Java
13. Swift
14. Jupyter Notebook
15. Shell
16. CSS
17. GDScript
18. Solidity
19. Vue
20. PHP
21. Dart
22. Ruby
23. Objective-C
24. PowerShell
25. Scala

According to the GitHub Repositories
πŸ‘18❀1
πŸ–₯ Git: Merging vs Rebasing

In git, when there are some changes in a parent branch from which you forked, there are two strategies to incorporate them into your working branch:

✨ Merging:

As the name suggests, 'merges' the parent branch into your branch. The advantage is that handling conflicts (if any) is easier, since you only need to resolve them for the merge commit once. However, this may make the git history a bit harder to follow

✨ Rebasing:

Takes all the commits you made in your branch, and applies them on top of the head of the parent branch. As if repositioning the base of the branch.

This helps to create a linear and easy to follow git history, but conflict resolution may be tedious and you need to force push the branch to the origin.
πŸ‘7