Artificial Intelligence & ChatGPT Prompts
40.5K subscribers
667 photos
5 videos
319 files
561 links
๐Ÿ”“Unlock Your Coding Potential with ChatGPT
๐Ÿš€ Your Ultimate Guide to Ace Coding Interviews!
๐Ÿ’ป Coding tips, practice questions, and expert advice to land your dream tech job.


For Promotions: @love_data
Download Telegram
๐Ÿฒ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐˜๐—ต๐—ฒ ๐— ๐—ผ๐˜€๐˜ ๐—œ๐—ป-๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€๐Ÿ˜

๐Ÿš€ Want to future-proof your career without spending a single rupee?๐Ÿ’ต

These 6 free online courses from top institutions like Google, Harvard, IBM, Stanford, and Cisco will help you master high-demand tech skills in 2025 โ€” from Data Analytics to Machine Learning๐Ÿ“Š๐Ÿง‘โ€๐Ÿ’ป

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4fbDejW

Each course is beginner-friendly, comes with certification, and helps you build your resume or switch careersโœ…๏ธ
โค1
Creating a data science and machine learning project involves several steps, from defining the problem to deploying the model. Here is a general outline of how you can create a data science and ML project:

1. Define the Problem: Start by clearly defining the problem you want to solve. Understand the business context, the goals of the project, and what insights or predictions you aim to derive from the data.

2. Collect Data: Gather relevant data that will help you address the problem. This could involve collecting data from various sources, such as databases, APIs, CSV files, or web scraping.

3. Data Preprocessing: Clean and preprocess the data to make it suitable for analysis and modeling. This may involve handling missing values, encoding categorical variables, scaling features, and other data cleaning tasks.

4. Exploratory Data Analysis (EDA): Perform exploratory data analysis to understand the data better. Visualize the data, identify patterns, correlations, and outliers that may impact your analysis.

5. Feature Engineering: Create new features or transform existing features to improve the performance of your machine learning model. Feature engineering is crucial for building a successful ML model.

6. Model Selection: Choose the appropriate machine learning algorithm based on the problem you are trying to solve (classification, regression, clustering, etc.). Experiment with different models and hyperparameters to find the best-performing one.

7. Model Training: Split your data into training and testing sets and train your machine learning model on the training data. Evaluate the model's performance on the testing data using appropriate metrics.

8. Model Evaluation: Evaluate the performance of your model using metrics like accuracy, precision, recall, F1-score, ROC-AUC, etc. Make sure to analyze the results and iterate on your model if needed.

9. Deployment: Once you have a satisfactory model, deploy it into production. This could involve creating an API for real-time predictions, integrating it into a web application, or any other method of making your model accessible.

10. Monitoring and Maintenance: Monitor the performance of your deployed model and ensure that it continues to perform well over time. Update the model as needed based on new data or changes in the problem domain.
โค2
๐Ÿ“Š๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ - ๐Ÿญ๐Ÿฌ๐Ÿฌ% ๐—™๐—ฅ๐—˜๐—˜ ๐Ÿ˜

Start learning industry-relevant data skills today at zero cost!

โœ… 100% FREE Certification
โœ… Learn Data Analysis, Excel, SQL, Power BI & more
โœ… Boost your resume with job-ready skills

๐Ÿš€ Perfect for Students, Freshers & Career Switchers

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 
 
https://pdlink.in/4lp7hXQ
 
๐ŸŽ“ Enroll Now & Get Certified
โค1
One day or Day one. You decide.

Data Science edition.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜† : I will learn SQL.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Download mySQL Workbench.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will build my projects for my portfolio.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Look on Kaggle for a dataset to work on.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will master statistics.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Start the free Khan Academy Statistics and Probability course.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will learn to tell stories with data.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Install Tableau Public and create my first chart.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will become a Data Scientist.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Update my resume and apply to some Data Science job postings.
โค1
๐Ÿš€๐—ง๐—ผ๐—ฝ ๐Ÿฏ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ-๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฒ๐—ฑ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Want to boost your tech career? Learn Python for FREE with Google-certified courses!
Perfect for beginnersโ€”no expensive bootcamps needed.

๐Ÿ”ฅ Learn Python for AI, Data, Automation & More!

๐Ÿ“๐—ฆ๐˜๐—ฎ๐—ฟ๐˜ ๐—ก๐—ผ๐˜„๐Ÿ‘‡

https://pdlink.in/42okGqG

โœ… Future You Will Thank You!
โค2
๐Ÿ”‹ JavaScript vs. Python
โค1
๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฒ๐—ฑ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐—œ๐—ป ๐—ง๐—ผ๐—ฝ ๐— ๐—ก๐—–๐˜€๐Ÿ˜

Learn Data Analytics, Data Science & AI From Top Data Experts 

Modes :- Online & Offline (Hyderabad/Pune)

๐—›๐—ถ๐—ด๐—ต๐—น๐—ถ๐—ด๐—ต๐˜๐—ฒ๐˜€:- 

- 12.65 Lakhs Highest Salary
- 500+ Partner Companies
- 100% Job Assistance
- 5.7 LPA Average Salary

๐—•๐—ผ๐—ผ๐—ธ ๐—ฎ ๐—™๐—ฅ๐—˜๐—˜ ๐——๐—ฒ๐—บ๐—ผ๐Ÿ‘‡:-

๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ :- https://pdlink.in/4fdWxJB

๐—›๐˜†๐—ฑ๐—ฒ๐—ฟ๐—ฎ๐—ฏ๐—ฎ๐—ฑ :- https://pdlink.in/4kFhjn3

๐—ฃ๐˜‚๐—ป๐—ฒ :- https://pdlink.in/45p4GrC

( Hurry Up ๐Ÿƒโ€โ™‚๏ธLimited Slots )
โค1
๐—ง๐—ต๐—ฒ ๐—•๐—ฒ๐˜€๐˜ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐Ÿฏ๐Ÿฌ-๐——๐—ฎ๐˜† ๐—ฅ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ ๐˜๐—ผ ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—๐—ผ๐˜‚๐—ฟ๐—ป๐—ฒ๐˜†๐Ÿ˜

๐Ÿ“Š If I had to restart my Data Science journey in 2025, this is where Iโ€™d beginโœจ๏ธ

Meet 30 Days of Data Science โ€” a free and beginner-friendly GitHub repository that guides you through the core fundamentals of data science in just one month๐Ÿง‘โ€๐ŸŽ“๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4mfNdXR

Simply bookmark the page, pick Day 1, and begin your journeyโœ…๏ธ
โค1
Roadmap to Becoming a Python Developer ๐Ÿš€

1. Basics ๐ŸŒฑ
- Learn programming fundamentals and Python syntax.

2. Core Python ๐Ÿง 
- Master data structures, functions, and OOP.

3. Advanced Python ๐Ÿ“ˆ
- Explore modules, file handling, and exceptions.

4. Web Development ๐ŸŒ
- Use Django or Flask; build REST APIs.

5. Data Science ๐Ÿ“Š
- Learn NumPy, pandas, and Matplotlib.

6. Projects & Practice๐Ÿ’ก
- Build projects, contribute to open-source, join communities.

Like for more โค๏ธ

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค1
๐ŸŽ“ ๐€๐œ๐œ๐ž๐ง๐ญ๐ฎ๐ซ๐ž ๐…๐‘๐„๐„ ๐‚๐ž๐ซ๐ญ๐ข๐Ÿ๐ข๐œ๐š๐ญ๐ข๐จ๐ง ๐‚๐จ๐ฎ๐ซ๐ฌ๐ž๐ฌ | ๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—ก๐—ผ๐˜„ ๐Ÿ˜

Boost your skills with 100% FREE certification courses from Accenture!

๐Ÿ“š FREE Courses Offered:
1๏ธโƒฃ Data Processing and Visualization
2๏ธโƒฃ Exploratory Data Analysis
3๏ธโƒฃ SQL Fundamentals
4๏ธโƒฃ Python Basics
5๏ธโƒฃ Acquiring Data

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 

https://pdlink.in/45WnGy1

โœ… Learn Online | ๐Ÿ“œ Get Certified
โค2
Machine Learning โ€“ Essential Concepts ๐Ÿš€

1๏ธโƒฃ Types of Machine Learning

Supervised Learning โ€“ Uses labeled data to train models.

Examples: Linear Regression, Decision Trees, Random Forest, SVM


Unsupervised Learning โ€“ Identifies patterns in unlabeled data.

Examples: Clustering (K-Means, DBSCAN), PCA


Reinforcement Learning โ€“ Models learn through rewards and penalties.

Examples: Q-Learning, Deep Q Networks



2๏ธโƒฃ Key Algorithms

Regression โ€“ Predicts continuous values (Linear Regression, Ridge, Lasso).

Classification โ€“ Categorizes data into classes (Logistic Regression, Decision Tree, SVM, Naรฏve Bayes).

Clustering โ€“ Groups similar data points (K-Means, Hierarchical Clustering, DBSCAN).

Dimensionality Reduction โ€“ Reduces the number of features (PCA, t-SNE, LDA).


3๏ธโƒฃ Model Training & Evaluation

Train-Test Split โ€“ Dividing data into training and testing sets.

Cross-Validation โ€“ Splitting data multiple times for better accuracy.

Metrics โ€“ Evaluating models with RMSE, Accuracy, Precision, Recall, F1-Score, ROC-AUC.


4๏ธโƒฃ Feature Engineering

Handling missing data (mean imputation, dropna()).

Encoding categorical variables (One-Hot Encoding, Label Encoding).

Feature Scaling (Normalization, Standardization).


5๏ธโƒฃ Overfitting & Underfitting

Overfitting โ€“ Model learns noise, performs well on training but poorly on test data.

Underfitting โ€“ Model is too simple and fails to capture patterns.

Solution: Regularization (L1, L2), Hyperparameter Tuning.


6๏ธโƒฃ Ensemble Learning

Combining multiple models to improve performance.

Bagging (Random Forest)

Boosting (XGBoost, Gradient Boosting, AdaBoost)



7๏ธโƒฃ Deep Learning Basics

Neural Networks (ANN, CNN, RNN).

Activation Functions (ReLU, Sigmoid, Tanh).

Backpropagation & Gradient Descent.


8๏ธโƒฃ Model Deployment

Deploy models using Flask, FastAPI, or Streamlit.

Model versioning with MLflow.

Cloud deployment (AWS SageMaker, Google Vertex AI).

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
โค1๐Ÿ‘1๐Ÿฅฐ1
๐Ÿณ ๐— ๐˜‚๐˜€๐˜-๐—ž๐—ป๐—ผ๐˜„ ๐—ฆ๐—ค๐—Ÿ ๐—–๐—ผ๐—ป๐—ฐ๐—ฒ๐—ฝ๐˜๐˜€ ๐—˜๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐—”๐˜€๐—ฝ๐—ถ๐—ฟ๐—ถ๐—ป๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐—ฆ๐—ต๐—ผ๐˜‚๐—น๐—ฑ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐Ÿ˜

If youโ€™re serious about becoming a data analyst, thereโ€™s no skipping SQL. Itโ€™s not just another technical skill โ€” itโ€™s the core language for data analytics.๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/44S3Xi5

This guide covers 7 key SQL concepts that every beginner must learnโœ…๏ธ
โค1
๐Ÿš€ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐Ÿญ๐Ÿฌ๐Ÿฌ% ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ | ๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—ก๐—ผ๐˜„ ๐Ÿ˜

Upgrade your tech skills with FREE certification courses from Google

๐Ÿ“š Courses Offered:
1๏ธโƒฃ Google Cloud โ€“ Generative AI
2๏ธโƒฃ Google Cloud Computing Foundations with Kubernetes

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 

https://pdlink.in/46uQii9

โœ… 100% Online | ๐ŸŽ“ Get Certified by Google Cloud
โค1
๐—ฆ๐—ค๐—Ÿ ๐— ๐˜‚๐˜€๐˜-๐—ž๐—ป๐—ผ๐˜„ ๐——๐—ถ๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ๐˜€ ๐Ÿ“Š

Whether you're writing daily queries or preparing for interviews, understanding these subtle SQL differences can make a big impact on both performance and accuracy.

๐Ÿง  Hereโ€™s a powerful visual that compares the most commonly misunderstood SQL concepts โ€” side by side.

๐Ÿ“Œ ๐—–๐—ผ๐˜ƒ๐—ฒ๐—ฟ๐—ฒ๐—ฑ ๐—ถ๐—ป ๐˜๐—ต๐—ถ๐˜€ ๐˜€๐—ป๐—ฎ๐—ฝ๐˜€๐—ต๐—ผ๐˜:
๐Ÿ”น RANK() vs DENSE_RANK()
๐Ÿ”น HAVING vs WHERE
๐Ÿ”น UNION vs UNION ALL
๐Ÿ”น JOIN vs UNION
๐Ÿ”น CTE vs TEMP TABLE
๐Ÿ”น SUBQUERY vs CTE
๐Ÿ”น ISNULL vs COALESCE
๐Ÿ”น DELETE vs DROP
๐Ÿ”น INTERSECT vs INNER JOIN
๐Ÿ”น EXCEPT vs NOT IN

React โ™ฅ๏ธ for detailed post with examples
โค1๐Ÿ‘1