Artificial Intelligence & ChatGPT Prompts
40.5K subscribers
667 photos
5 videos
319 files
561 links
๐Ÿ”“Unlock Your Coding Potential with ChatGPT
๐Ÿš€ Your Ultimate Guide to Ace Coding Interviews!
๐Ÿ’ป Coding tips, practice questions, and expert advice to land your dream tech job.


For Promotions: @love_data
Download Telegram
Creating a data science and machine learning project involves several steps, from defining the problem to deploying the model. Here is a general outline of how you can create a data science and ML project:

1. Define the Problem: Start by clearly defining the problem you want to solve. Understand the business context, the goals of the project, and what insights or predictions you aim to derive from the data.

2. Collect Data: Gather relevant data that will help you address the problem. This could involve collecting data from various sources, such as databases, APIs, CSV files, or web scraping.

3. Data Preprocessing: Clean and preprocess the data to make it suitable for analysis and modeling. This may involve handling missing values, encoding categorical variables, scaling features, and other data cleaning tasks.

4. Exploratory Data Analysis (EDA): Perform exploratory data analysis to understand the data better. Visualize the data, identify patterns, correlations, and outliers that may impact your analysis.

5. Feature Engineering: Create new features or transform existing features to improve the performance of your machine learning model. Feature engineering is crucial for building a successful ML model.

6. Model Selection: Choose the appropriate machine learning algorithm based on the problem you are trying to solve (classification, regression, clustering, etc.). Experiment with different models and hyperparameters to find the best-performing one.

7. Model Training: Split your data into training and testing sets and train your machine learning model on the training data. Evaluate the model's performance on the testing data using appropriate metrics.

8. Model Evaluation: Evaluate the performance of your model using metrics like accuracy, precision, recall, F1-score, ROC-AUC, etc. Make sure to analyze the results and iterate on your model if needed.

9. Deployment: Once you have a satisfactory model, deploy it into production. This could involve creating an API for real-time predictions, integrating it into a web application, or any other method of making your model accessible.

10. Monitoring and Maintenance: Monitor the performance of your deployed model and ensure that it continues to perform well over time. Update the model as needed based on new data or changes in the problem domain.
โค1
Which programming language should I use on interview?

Companies usually let you choose, in which case you should use your most comfortable language. If you know a bunch of languages, prefer one that lets you express more with fewer characters and fewer lines of code, like Python or Ruby. It keeps your whiteboard cleaner.

Try to stick with the same language for the whole interview, but sometimes you might want to switch languages for a question. E.g., processing a file line by line will be far easier in Python than in C++.

Sometimes, though, your interviewer will do this thing where they have a pet question thatโ€™s, for example, C-specific. If you list C on your resume, theyโ€™ll ask it.

So keep that in mind! If youโ€™re not confident with a language, make that clear on your resume. Put your less-strong languages under a header like โ€˜Working Knowledge.โ€™
โค2
Machine Learning Algorithm:

1. Linear Regression:
   - Imagine drawing a straight line on a graph to show the relationship between two things, like how the height of a plant might relate to the amount of sunlight it gets.

2. Decision Trees:
   - Think of a game where you have to answer yes or no questions to find an object. It's like a flowchart helping you decide what the object is based on your answers.

3. Random Forest:
   - Picture a group of friends making decisions together. Random Forest is like combining the opinions of many friends to make a more reliable decision.

4. Support Vector Machines (SVM):
   - Imagine drawing a line to separate different types of things, like putting all red balls on one side and blue balls on the other, with the line in between them.

5. k-Nearest Neighbors (kNN):
   - Pretend you have a collection of toys, and you want to find out which toys are similar to a new one. kNN is like asking your friends which toys are closest in looks to the new one.

6. Naive Bayes:
   - Think of a detective trying to solve a mystery. Naive Bayes is like the detective making guesses based on the probability of certain clues leading to the culprit.

7. K-Means Clustering:
   - Imagine sorting your toys into different groups based on their similarities, like putting all the cars in one group and all the dolls in another.

8. Hierarchical Clustering:
   - Picture organizing your toys into groups, and then those groups into bigger groups. It's like creating a family tree for your toys based on their similarities.

9. Principal Component Analysis (PCA):
   - Suppose you have many different measurements for your toys, and PCA helps you find the most important ones to understand and compare them easily.

10. Neural Networks (Deep Learning):
    - Think of a robot brain with lots of interconnected parts. Each part helps the robot understand different aspects of things, like recognizing shapes or colors.

11. Gradient Boosting algorithms:
    - Imagine you are trying to reach the top of a hill, and each time you take a step, you learn from the mistakes of the previous step to get closer to the summit. XGBoost and LightGBM are like smart ways of learning from those steps.

Share with credits: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค2
Complete Roadmap to learn Machine Learning and Artificial Intelligence
๐Ÿ‘‡๐Ÿ‘‡

Week 1-2: Introduction to Machine Learning
- Learn the basics of Python programming language (if you are not already familiar with it)
- Understand the fundamentals of Machine Learning concepts such as supervised learning, unsupervised learning, and reinforcement learning
- Study linear algebra and calculus basics
- Complete online courses like Andrew Ng's Machine Learning course on Coursera

Week 3-4: Deep Learning Fundamentals
- Dive into neural networks and deep learning
- Learn about different types of neural networks like Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
- Implement deep learning models using frameworks like TensorFlow or PyTorch
- Complete online courses like Deep Learning Specialization on Coursera

Week 5-6: Natural Language Processing (NLP) and Computer Vision
- Explore NLP techniques such as tokenization, word embeddings, and sentiment analysis
- Dive into computer vision concepts like image classification, object detection, and image segmentation
- Work on projects involving NLP and Computer Vision applications

Week 7-8: Reinforcement Learning and AI Applications
- Learn about Reinforcement Learning algorithms like Q-learning and Deep Q Networks
- Explore AI applications in fields like healthcare, finance, and autonomous vehicles
- Work on a final project that combines different aspects of Machine Learning and AI

Additional Tips:
- Practice coding regularly to strengthen your programming skills
- Join online communities like Kaggle or GitHub to collaborate with other learners
- Read research papers and articles to stay updated on the latest advancements in the field

Pro Tip: Roadmap won't help unless you start working on it consistently. Start working on projects as early as possible.

2 months are good as a starting point to get grasp the basics of ML & AI but mastering it is very difficult as AI keeps evolving every day.

Best Resources to learn ML & AI ๐Ÿ‘‡

Learn Python for Free

Prompt Engineering Course

Prompt Engineering Guide

Data Science Course

Google Cloud Generative AI Path

Unlock the power of Generative AI Models

Machine Learning with Python Free Course

Machine Learning Free Book

Deep Learning Nanodegree Program with Real-world Projects

AI, Machine Learning and Deep Learning

Join @free4unow_backup for more free courses

ENJOY LEARNING๐Ÿ‘๐Ÿ‘
โค2
An Artificial Neuron Network (ANN), popularly known as Neural Network is a computational model based on the structure and functions of biological neural networks. It is like an artificial human nervous system for receiving, processing, and transmitting information in terms of Computer Science.

Basically, there are 3 different layers in a neural network :

Input Layer (All the inputs are fed in the model through this layer)

Hidden Layers (There can be more than one hidden layers which are used for processing the inputs received from the input layers)

Output Layer (The data after processing is made available at the output layer)

Graph data can be used with a lot of learning tasks contain a lot rich relation data among elements. For example, modeling physics system, predicting protein interface, and classifying diseases require that a model learns from graph inputs. Graph reasoning models can also be used for learning from non-structural data like texts and images and reasoning on extracted structures.
โค2
๐Ÿ–ฅ Top Programming Languages to learn in 2025 - [Part 1] ๐Ÿ–ฅ


1. JavaScript
- learnjavascript.online
- https://t.iss.one/javascript_courses/1001
- learn-js.org

2. Java
- learnjavaonline.org
- javatpoint.com

3. C#
- learncs.org
- w3schools.com

4. TypeScript
- Typescriptlang.org
- learntypescript.dev

5. Rust
- rust-lang.org
- exercism.org
โค1
JavaScript (JS) roadmap:

1. Basic Fundamentals:
- Variables, data types, and operators.
- Control structures like loops and conditionals.
- Functions and scope.

2. DOM Manipulation:
- Access and modify HTML and CSS using JavaScript.
- Event handling.

3. Asynchronous Programming:
- Promises and async/await for handling asynchronous operations.

4. ES6 and Modern JavaScript:
- Arrow functions, template literals, and destructuring.
- Modules for code organization.
- Classes for object-oriented programming.

5. Popular Libraries and Frameworks:
- Learn libraries like jQuery or frameworks like React, Angular, or Vue depending on your project needs.

6. Package Management:
- Tools like npm or yarn for managing dependencies.

7. Build Tools:
- Webpack, Babel, and other tools for bundling and transpiling.

8. API Interaction:
- Fetch or Axios for making API requests.

9. State Management (For Frameworks):
- Redux for React, Vuex for Vue, etc.

10. Testing:
- Learn testing frameworks like Jest.

11. Version Control:
- Git for code versioning and collaboration.

12. Continuous Integration (CI) and Deployment:
- Travis CI, Jenkins, or others for automating testing and deployment.

13. Server-Side JavaScript (Optional):
- Node.js for server-side development.

14. Advanced Topics (Optional):
- WebSockets, WebRTC, Progressive Web Apps (PWAs), and more.

This roadmap covers the foundational knowledge and key steps in a JavaScript developer's journey. You can explore more deeply into areas that align with your specific goals and projects.
โค1
HTML Tags List.pdf
115.1 KB
๐Ÿ”ฐ Free HTML Tag List ๐Ÿ“๐Ÿ“š

React โค๏ธ for more like this

Well done guys, will share the cloud opportunity next week ๐Ÿ˜
โค1
๐ˆ๐ฆ๐ฉ๐จ๐ซ๐ญ๐ข๐ง๐  ๐๐ž๐œ๐ž๐ฌ๐ฌ๐š๐ซ๐ฒ ๐‹๐ข๐›๐ซ๐š๐ซ๐ข๐ž๐ฌ:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

๐‹๐จ๐š๐๐ข๐ง๐  ๐ญ๐ก๐ž ๐ƒ๐š๐ญ๐š๐ฌ๐ž๐ญ:

df = pd.read_csv('your_dataset.csv')

๐ˆ๐ง๐ข๐ญ๐ข๐š๐ฅ ๐ƒ๐š๐ญ๐š ๐ˆ๐ง๐ฌ๐ฉ๐ž๐œ๐ญ๐ข๐จ๐ง:

1- View the first few rows:
df.head()

2- Summary of the dataset:
df.info()

3- Statistical summary:
df.describe()

๐‡๐š๐ง๐๐ฅ๐ข๐ง๐  ๐Œ๐ข๐ฌ๐ฌ๐ข๐ง๐  ๐•๐š๐ฅ๐ฎ๐ž๐ฌ:

1- Identify missing values:
df.isnull().sum()

2- Visualize missing values:
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.show()

๐ƒ๐š๐ญ๐š ๐•๐ข๐ฌ๐ฎ๐š๐ฅ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง:

1- Histograms:
df.hist(bins=30, figsize=(20, 15))
plt.show()

2 - Box plots:
plt.figure(figsize=(10, 6))
sns.boxplot(data=df)
plt.xticks(rotation=90)
plt.show()

3- Pair plots:
sns.pairplot(df)
plt.show()

4- Correlation matrix and heatmap:
correlation_matrix = df.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()

๐‚๐š๐ญ๐ž๐ ๐จ๐ซ๐ข๐œ๐š๐ฅ ๐ƒ๐š๐ญ๐š ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ข๐ฌ:
Count plots for categorical features:

plt.figure(figsize=(10, 6))
sns.countplot(x='categorical_column', data=df)
plt.show()

Python Interview Q&A: https://whatsapp.com/channel/0029Vau5fZECsU9HJFLacm2a

Like for more โค๏ธ

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค2
Data Analytics Interview Questions

Q1: Describe a situation where you had to clean a messy dataset. What steps did you take?

Ans: I encountered a dataset with missing values, duplicates, and inconsistent formats. I used Python's Pandas library to identify and handle missing values, standardized data formats using regular expressions, and removed duplicates. I also validated the cleaned data against known benchmarks to ensure accuracy.

Q2: How do you handle outliers in a dataset?

Ans: I start by visualizing the data using box plots or scatter plots to identify potential outliers. Then, depending on the nature of the data and the problem context, I might cap the outliers, transform the data, or even remove them if they're due to errors.

Q3: How would you use data to suggest optimal pricing strategies to Airbnb hosts?

Ans: I'd analyze factors like location, property type, amenities, local events, and historical booking rates. Using regression analysis, I'd model the relationship between these factors and pricing to suggest an optimal price range. Additionally, analyzing competitor pricing in the area can provide insights into market rates.

Q4: Describe a situation where you used data to improve the user experience on the Airbnb platform.

Ans: While analyzing user feedback and platform interaction data, I noticed that users often had difficulty navigating the booking process. Based on this, I suggested streamlining the booking steps and providing clearer instructions. A/B testing confirmed that these changes led to a higher conversion rate and improved user feedback.
โค3
๐Ÿ๐ŸŽ๐ŸŽ+ ๐…๐‘๐„๐„ ๐‚๐ž๐ซ๐ญ๐ข๐Ÿ๐ข๐œ๐š๐ญ๐ข๐จ๐ง ๐‚๐จ๐ฎ๐ซ๐ฌ๐ž๐ฌ ๐Ÿ˜

- Data Analytics
- BigData
- Artificial Intelligence
- Cloud Computing
- Data Science
- Machine Learning
- Cyber Security

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 
 
https://pdlink.in/4dJ27Ta
 
Enroll For FREE & Get Certified ๐ŸŽ“
โœ… Learn New Skills FREE ๐Ÿ”ฐ

1. Web Development โž
โ—€๏ธ https://t.iss.one/webdevcoursefree

2. CSS โž
โ—€๏ธ https://css-tricks.com

3. JavaScript โž
โ—€๏ธ https://t.iss.one/javascript_courses

4. React โž
โ—€๏ธ https://react-tutorial.app

5. Data Engineering โž
โ—€๏ธ https://t.iss.one/sql_engineer

6. Data Science  โž
โ—€๏ธ https://t.iss.one/datasciencefun

7. Python โž
โ—€๏ธ https://pythontutorial.net

8. SQL โž
โ—€๏ธ  https://t.iss.one/sqlanalyst

9. Git and GitHub โž
โ—€๏ธ https://GitFluence.com

10. Blockchain โž
โ—€๏ธ https://t.iss.one/Bitcoin_Crypto_Web

11. Mongo DB โž
โ—€๏ธ https://mongodb.com

12. Node JS โž
โ—€๏ธ https://nodejsera.com

13. English Speaking โž
โ—€๏ธ https://t.iss.one/englishlearnerspro

14. C#โž
โ—€๏ธ https://learn.microsoft.com/en-us/training/paths/get-started-c-sharp-part-1/

15. Excelโž
โ—€๏ธ https://t.iss.one/excel_analyst

16. Generative AIโž
โ—€๏ธ https://t.iss.one/generativeai_gpt

17. Java
โ—€๏ธ https://t.iss.one/Java_Programming_Notes

18. Artificial Intelligence
โ—€๏ธ https://t.iss.one/machinelearning_deeplearning

19. Data Structure & Algorithms
โ—€๏ธ https://t.iss.one/dsabooks

20. Backend Development
โ—€๏ธ https://imp.i115008.net/rn2nyy

21. Python for AI
โ—€๏ธ https://deeplearning.ai/short-courses/ai-python-for-beginners/

Join @free4unow_backup for more free courses

Like for more โค๏ธ

ENJOY LEARNING๐Ÿ‘๐Ÿ‘
โค1
Q1: How would you analyze data to understand user connection patterns on a professional network?

Ans: I'd use graph databases like Neo4j for social network analysis. By analyzing connection patterns, I can identify influencers or isolated communities.

Q2: Describe a challenging data visualization you created to represent user engagement metrics.

Ans: I visualized multi-dimensional data showing user engagement across features, regions, and time using tools like D3.js, creating an interactive dashboard with drill-down capabilities.

Q3: How would you identify and target passive job seekers on LinkedIn?

Ans: I'd analyze user behavior patterns, like increased profile updates, frequent visits to job postings, or engagement with career-related content, to identify potential passive job seekers.

Q4: How do you measure the effectiveness of a new feature launched on LinkedIn?


Ans: I'd set up A/B tests, comparing user engagement metrics between those who have access to the new feature and a control group. I'd then analyze metrics like time spent, feature usage frequency, and overall platform engagement to measure effectiveness.
โค1
๐Ÿ“Š Data Analyst Roadmap (2025)

Master the Skills That Top Companies Are Hiring For!

๐Ÿ“ 1. Learn Excel / Google Sheets
Basic formulas & formatting
VLOOKUP, Pivot Tables, Charts
Data cleaning & conditional formatting

๐Ÿ“ 2. Master SQL
SELECT, WHERE, ORDER BY
JOINs (INNER, LEFT, RIGHT)
GROUP BY, HAVING, LIMIT
Subqueries, CTEs, Window Functions

๐Ÿ“ 3. Learn Data Visualization Tools
Power BI / Tableau (choose one)
Charts, filters, slicers
Dashboards & storytelling

๐Ÿ“ 4. Get Comfortable with Statistics
Mean, Median, Mode, Std Dev
Probability basics
A/B Testing, Hypothesis Testing
Correlation & Regression

๐Ÿ“ 5. Learn Python for Data Analysis (Optional but Powerful)
Pandas & NumPy for data handling
Seaborn, Matplotlib for visuals
Jupyter Notebooks for analysis

๐Ÿ“ 6. Data Cleaning & Wrangling
Handle missing values
Fix data types, remove duplicates
Text processing & date formatting

๐Ÿ“ 7. Understand Business Metrics
KPIs: Revenue, Churn, CAC, LTV
Think like a business analyst
Deliver actionable insights

๐Ÿ“ 8. Communication & Storytelling
Present insights with clarity
Simplify complex data
Speak the language of stakeholders

๐Ÿ“ 9. Version Control (Git & GitHub)
Track your projects
Build a data portfolio
Collaborate with the community

๐Ÿ“ 10. Interview & Resume Preparation
Excel, SQL, case-based questions
Mock interviews + real projects
Resume with measurable achievements

โœจ React โค๏ธ for more
โค1
If you want to Excel in Data Science and become an expert, master these essential concepts:

Core Data Science Skills:

โ€ข Python for Data Science โ€“ Pandas, NumPy, Matplotlib, Seaborn
โ€ข SQL for Data Extraction โ€“ SELECT, JOIN, GROUP BY, CTEs, Window Functions
โ€ข Data Cleaning & Preprocessing โ€“ Handling missing data, outliers, duplicates
โ€ข Exploratory Data Analysis (EDA) โ€“ Visualizing data trends

Machine Learning (ML):

โ€ข Supervised Learning โ€“ Linear Regression, Decision Trees, Random Forest
โ€ข Unsupervised Learning โ€“ Clustering, PCA, Anomaly Detection
โ€ข Model Evaluation โ€“ Cross-validation, Confusion Matrix, ROC-AUC
โ€ข Hyperparameter Tuning โ€“ Grid Search, Random Search

Deep Learning (DL):

โ€ข Neural Networks โ€“ TensorFlow, PyTorch, Keras
โ€ข CNNs & RNNs โ€“ Image & sequential data processing
โ€ข Transformers & LLMs โ€“ GPT, BERT, Stable Diffusion

Big Data & Cloud Computing:

โ€ข Hadoop & Spark โ€“ Handling large datasets
โ€ข AWS, GCP, Azure โ€“ Cloud-based data science solutions
โ€ข MLOps โ€“ Deploy models using Flask, FastAPI, Docker

Statistics & Mathematics for Data Science:

โ€ข Probability & Hypothesis Testing โ€“ P-values, T-tests, Chi-square
โ€ข Linear Algebra & Calculus โ€“ Matrices, Vectors, Derivatives
โ€ข Time Series Analysis โ€“ ARIMA, Prophet, LSTMs

Real-World Applications:

โ€ข Recommendation Systems โ€“ Personalized AI suggestions
โ€ข NLP (Natural Language Processing) โ€“ Sentiment Analysis, Chatbots
โ€ข AI-Powered Business Insights โ€“ Data-driven decision-making

React โค๏ธ for more
โค1
๐Ÿฐ ๐—•๐—ฒ๐˜€๐˜ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฆ๐—ค๐—Ÿ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€๐Ÿ˜

Want to break into Data Analytics?๐Ÿ’ซ

It all starts with SQL โ€” the language every data analyst needs to master. Whether youโ€™re analyzing trends, pulling business reports, or cleaning datasets, SQL is at the heart of it all๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/44oj5Ds

Perfect for students, freshers, job seekers, or anyone transitioning into techโœ…๏ธ
Future-Proof Skills for Data Analysts in 2025 & Beyond

1๏ธโƒฃ AI-Powered Analytics ๐Ÿค– Leverage AI and AutoML tools like ChatGPT, DataRobot, and H2O.ai to automate insights and decision-making.

2๏ธโƒฃ Generative AI for Data Analysis ๐Ÿง  Use AI for generating SQL queries, writing Python scripts, and automating data storytelling.

3๏ธโƒฃ Real-Time Data Processing โšก Learn streaming technologies like Apache Kafka and Apache Flink for real-time analytics.

4๏ธโƒฃ DataOps & MLOps ๐Ÿ”„ Understand how to deploy and maintain machine learning models and analytical workflows in production environments.

5๏ธโƒฃ Knowledge of Graph Databases ๐Ÿ“Š Work with Neo4j and Amazon Neptune to analyze relationships in complex datasets.

6๏ธโƒฃ Advanced Data Privacy & Ethics ๐Ÿ” Stay updated on GDPR, CCPA, and AI ethics to ensure responsible data handling.

7๏ธโƒฃ No-Code & Low-Code Analytics ๐Ÿ› ๏ธ Use platforms like Alteryx, Knime, and Google AutoML for rapid prototyping and automation.

8๏ธโƒฃ API & Web Scraping Skills ๐ŸŒ Extract real-time data using APIs and web scraping tools like BeautifulSoup and Selenium.

9๏ธโƒฃ Cross-Disciplinary Collaboration ๐Ÿค Work with product managers, engineers, and business leaders to drive data-driven strategies.

๐Ÿ”Ÿ Continuous Learning & Adaptability ๐Ÿš€ Stay ahead by learning new technologies, attending conferences, and networking with industry experts.

Like for detailed explanation โค๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค1
๐—ง๐—ฒ๐—ฐ๐—ต ๐—๐—ผ๐—ฏ๐˜€ ๐—œ๐—ป ๐—ง๐—ผ๐—ฝ ๐—–๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€ | Across India๐Ÿ˜

Companies Hiring:- Google, Microsoft, Cognizant, Infosys, TCS & Many More

Roles:- Data Analysts ,Data Scientits ,Software Engineers & Other roles

๐—”๐—ฝ๐—ฝ๐—น๐˜† ๐—ก๐—ผ๐˜„๐Ÿ‘‡:-

https://bit.ly/44qMX2k

Select your experience & Complete The Registration Process

โœ… Start applying to jobs that fit your profile and boost your career growth!
SQL is one of the core languages used in data science, powering everything from quick data retrieval to complex deep dive analysis. Whether you're a seasoned data scientist or just starting out, mastering SQL can boost your ability to analyze data, create robust pipelines, and deliver actionable insights.

Letโ€™s dive into a comprehensive guide on SQL for Data Science!

I have broken it down into three key sections to help you:

๐Ÿญ. ๐—ฆ๐—ค๐—Ÿ ๐—–๐—ผ๐—ป๐—ฐ๐—ฒ๐—ฝ๐˜๐˜€:
Get a handle on the essentials -> SELECT statements, filtering, aggregations, joins, window functions, and more.

๐Ÿฎ. ๐—ฆ๐—ค๐—Ÿ ๐—ถ๐—ป ๐——๐—ฎ๐˜†-๐˜๐—ผ-๐——๐—ฎ๐˜† ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ:
See how SQL fits into the daily data science workflow. From quick data queries and deep-dive analysis to building pipelines and dashboards, SQL is really useful for data scientists, especially for product data scientists.

๐Ÿฏ. ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฆ๐—ค๐—Ÿ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐˜€:
Learn what interviewers look for in terms of technical skills, design and engineering expertise, communication abilities, and the importance of speed and accuracy.
โค1
๐—ง๐—ผ๐—ฝ ๐Ÿฑ ๐—ช๐—ฒ๐—ฏ๐˜€๐—ถ๐˜๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—๐—ฎ๐˜ƒ๐—ฎ๐—ฆ๐—ฐ๐—ฟ๐—ถ๐—ฝ๐˜ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Learning JavaScript doesnโ€™t have to be boring anymore!๐Ÿ’ซ

If endless tutorials make your eyes glaze over, weโ€™ve got just the thing โ€” these super fun & interactive platforms turn learning JavaScript into a game๐Ÿ‘จโ€๐Ÿ’ป

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3T4yYbP

Perfect for daily practice, weekend sprints, or anyone who learns better with hands-on interaction!9โœ…๏ธ
SQL Basics for Data Analysts

SQL (Structured Query Language) is used to retrieve, manipulate, and analyze data stored in databases.

1๏ธโƒฃ Understanding Databases & Tables

Databases store structured data in tables.

Tables contain rows (records) and columns (fields).

Each column has a specific data type (INTEGER, VARCHAR, DATE, etc.).

2๏ธโƒฃ Basic SQL Commands

Let's start with some fundamental queries:

๐Ÿ”น SELECT โ€“ Retrieve Data

SELECT * FROM employees; -- Fetch all columns from 'employees' table SELECT name, salary FROM employees; -- Fetch specific columns 

๐Ÿ”น WHERE โ€“ Filter Data

SELECT * FROM employees WHERE department = 'Sales'; -- Filter by department SELECT * FROM employees WHERE salary > 50000; -- Filter by salary 


๐Ÿ”น ORDER BY โ€“ Sort Data

SELECT * FROM employees ORDER BY salary DESC; -- Sort by salary (highest first) SELECT name, hire_date FROM employees ORDER BY hire_date ASC; -- Sort by hire date (oldest first) 


๐Ÿ”น LIMIT โ€“ Restrict Number of Results

SELECT * FROM employees LIMIT 5; -- Fetch only 5 rows SELECT * FROM employees WHERE department = 'HR' LIMIT 10; -- Fetch first 10 HR employees 


๐Ÿ”น DISTINCT โ€“ Remove Duplicates

SELECT DISTINCT department FROM employees; -- Show unique departments 


Mini Task for You: Try to write an SQL query to fetch the top 3 highest-paid employees from an "employees" table.

You can find free SQL Resources here
๐Ÿ‘‡๐Ÿ‘‡
https://t.iss.one/mysqldata

Like this post if you want me to continue covering all the topics! ๐Ÿ‘โค๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)

#sql
โค1