This media is not supported in your browser
VIEW IN TELEGRAM
انتشار باکتری در حضور آنتی بیوتیک و جهش آن.
Forwarded from Sitpor.org سیتپـــــور
🧑🏻🏫 #Renormalization w2.p1 Markov Chains
«مقدمهای بر بازبهنجارش»
هفته دوم: زنجیرههای مارکوف
قسمت اول: سریهای زمانی و زنجیرههای مارکوف
در این قست به سراغ زنجیرههای مارکوف میروم و در مورد درشتدانهبندی کردن سریهای زمانی صحبت خواهم کرد. به فضای مدلها و تغییرات پارامترها پس از بازبهنجارش خواهم پرداخت و به نقاط ثابت، کاهش ابعاد فضا و تغییر کلاسها اشاره خواهم کرد.
🎞 ویدیو در صفحه اینستاگرام سیتپور
🔗 اطلاعات بیشتر:
sitpor.org/2019/09/renorm-week2-mc/
~~~~~~
@sitpor
instagram.com/sitpor_media
~~~~~~~
«مقدمهای بر بازبهنجارش»
هفته دوم: زنجیرههای مارکوف
قسمت اول: سریهای زمانی و زنجیرههای مارکوف
در این قست به سراغ زنجیرههای مارکوف میروم و در مورد درشتدانهبندی کردن سریهای زمانی صحبت خواهم کرد. به فضای مدلها و تغییرات پارامترها پس از بازبهنجارش خواهم پرداخت و به نقاط ثابت، کاهش ابعاد فضا و تغییر کلاسها اشاره خواهم کرد.
🎞 ویدیو در صفحه اینستاگرام سیتپور
🔗 اطلاعات بیشتر:
sitpor.org/2019/09/renorm-week2-mc/
@sitpor
instagram.com/sitpor_media
~~~~~~~
Forwarded from Sitpor.org سیتپـــــور
آنیونها و آمار کوانتومی در ۲-بعد
در این نوشته در مورد معنی ذره در فیزیک صحبت میکنیم و به سراغ خواص آماری ذرات کوانتومی میریم. به این موضوع اشاره میکنیم که در ۲-بعد نه تنها ذرات کوانتومی فقط شامل فرمیونها و بوزونها نیستند بلکه آمار خیلی غنیتری هم اونجا وجود داره!
بیشتر بخوانید:
🔗 sitpor.org/1399/08/anyons-2d-qstat-phys/
~~~~~~
@sitpor
instagram.com/sitpor_media
~~~~~~~
در این نوشته در مورد معنی ذره در فیزیک صحبت میکنیم و به سراغ خواص آماری ذرات کوانتومی میریم. به این موضوع اشاره میکنیم که در ۲-بعد نه تنها ذرات کوانتومی فقط شامل فرمیونها و بوزونها نیستند بلکه آمار خیلی غنیتری هم اونجا وجود داره!
بیشتر بخوانید:
🔗 sitpor.org/1399/08/anyons-2d-qstat-phys/
@sitpor
instagram.com/sitpor_media
~~~~~~~
سیتپـــــور
آنیونها و آمار کوانتومی در ۲-بعد - سیتپـــــور
﷽ توی فیزیک، بسته به شرایط مسئلهای که مطالعه میکنیم، به یه سری چیزها میتونیم بگیم ذره. از یک نگاه، فیزیک چیزی نیست جز بررسی…
Forwarded from Sitpor.org سیتپـــــور
🧑🏻🏫 #Renormalization w2.p2 Math of Markov Chains
«مقدمهای بر بازبهنجارش»
هفته دوم: زنجیرههای مارکوف
قسمت دوم: ریاضیات زنجیرههای مارکوف
در این قست به سراغ زنجیرههای مارکوف میروم و در مورد درشتدانهبندی کردن سریهای زمانی صحبت خواهم کرد. به فضای مدلها و تغییرات پارامترها پس از بازبهنجارش خواهم پرداخت و به نقاط ثابت، کاهش ابعاد فضا و تغییر کلاسها اشاره خواهم کرد.
🎞 ویدیو در صفحه اینستاگرام سیتپور
🔗 اطلاعات بیشتر:
sitpor.org/2019/09/renorm-week2-mc/
~~~~~~
@sitpor
instagram.com/sitpor_media
~~~~~~~
«مقدمهای بر بازبهنجارش»
هفته دوم: زنجیرههای مارکوف
قسمت دوم: ریاضیات زنجیرههای مارکوف
در این قست به سراغ زنجیرههای مارکوف میروم و در مورد درشتدانهبندی کردن سریهای زمانی صحبت خواهم کرد. به فضای مدلها و تغییرات پارامترها پس از بازبهنجارش خواهم پرداخت و به نقاط ثابت، کاهش ابعاد فضا و تغییر کلاسها اشاره خواهم کرد.
🎞 ویدیو در صفحه اینستاگرام سیتپور
🔗 اطلاعات بیشتر:
sitpor.org/2019/09/renorm-week2-mc/
@sitpor
instagram.com/sitpor_media
~~~~~~~
💰 Fellowship in data science, machine learning, computational social science awarding KRW150M/year here (1 opening): https://t.co/UGhM5Tw2jJ #IBS #Scientist
🔖 Statistical physics of complex information dynamics
Arsham Ghavasieh, Carlo Nicolini, and Manlio De Domenico
Phys. Rev. E 102, 052304
Abstract
The constituents of a complex system exchange information to function properly. Their signaling dynamics often leads to the appearance of emergent phenomena, such as phase transitions and collective behaviors. While information exchange has been widely modeled by means of distinct spreading processes—such as continuous-time diffusion, random walks, synchronization and consensus—on top of complex networks, a unified and physically grounded framework to study information dynamics and gain insights about the macroscopic effects of microscopic interactions is still eluding us. In this paper, we present this framework in terms of a statistical field theory of information dynamics, unifying a range of dynamical processes governing the evolution of information on top of static or time-varying structures. We show that information operators form a meaningful statistical ensemble and their superposition defines a density matrix that can be used for the analysis of complex dynamics. As a direct application, we show that the von Neumann entropy of the ensemble can be a measure of the functional diversity of complex systems, defined in terms of the functional differentiation of higher-order interactions among their components. Our results suggest that modularity and hierarchy, two key features of empirical complex systems—from the human brain to social and urban networks—play a key role to guarantee functional diversity and, consequently, are favored.
Arsham Ghavasieh, Carlo Nicolini, and Manlio De Domenico
Phys. Rev. E 102, 052304
Abstract
The constituents of a complex system exchange information to function properly. Their signaling dynamics often leads to the appearance of emergent phenomena, such as phase transitions and collective behaviors. While information exchange has been widely modeled by means of distinct spreading processes—such as continuous-time diffusion, random walks, synchronization and consensus—on top of complex networks, a unified and physically grounded framework to study information dynamics and gain insights about the macroscopic effects of microscopic interactions is still eluding us. In this paper, we present this framework in terms of a statistical field theory of information dynamics, unifying a range of dynamical processes governing the evolution of information on top of static or time-varying structures. We show that information operators form a meaningful statistical ensemble and their superposition defines a density matrix that can be used for the analysis of complex dynamics. As a direct application, we show that the von Neumann entropy of the ensemble can be a measure of the functional diversity of complex systems, defined in terms of the functional differentiation of higher-order interactions among their components. Our results suggest that modularity and hierarchy, two key features of empirical complex systems—from the human brain to social and urban networks—play a key role to guarantee functional diversity and, consequently, are favored.
Physical Review E
Statistical physics of complex information dynamics
The constituents of a complex system exchange information to function properly. Their signaling dynamics often leads to the appearance of emergent phenomena, such as phase transitions and collective behaviors. While information exchange has been widely modeled…
🎞 Dirk Brockmann gave the keynote lecture on "A network perspective on the COVID-19 pandemic".
https://youtu.be/0XBIldY8agA?list=PLX5MLZUBu5RXLhBvhWBRc5ZxjXIYAnWJu
https://youtu.be/0XBIldY8agA?list=PLX5MLZUBu5RXLhBvhWBRc5ZxjXIYAnWJu
YouTube
Dutch NetSci Young Talent Symposium 2020 | Dirk Brockmann
During our inaugural Young Talent Symposium on November 2nd 2020, professor Dirk Brockmann gave the keynote lecture on "A network perspective on the COVID-19...
💡💉 چه کسانی را ابتدا باید واکسینه کرد؟
https://www.wired.com/story/covid-19-vaccine-super-spreaders/
https://www.wired.com/story/covid-19-vaccine-super-spreaders/
Wired
The Vulnerable Can Wait. Vaccinate the Covid Super-Spreaders First
Who gets priority when Covid-19 shots are in short supply? Network theorists have a counterintuitive answer: Start with the social butterflies.
💡 David Wolpert linking non-equilibrium physics and Bayesian networks
“Now we can start to analyze how thermodynamics of systems from cells to digital circuits depend on network structures connecting subsystems of those systems
https://t.co/pF8YbThaY2
“Now we can start to analyze how thermodynamics of systems from cells to digital circuits depend on network structures connecting subsystems of those systems
https://t.co/pF8YbThaY2
www.santafe.edu
New research explores the thermodynamics of off-equilibrium systems
<p>Until now, systems far from thermal equilibrium couldn’t be analyzed with conventional thermodynamics and statistical physics. In a paper published in <em>Physical Review Letters</em>, David Wolpert presents a new hybrid formalism to overcome these limitations.</p>
Complex Systems Seminar Special Event | Searching for the densest network that does not always synchronize
Steven Strogatz, Applied Mathematics, Cornell University
Tuesday, November 17, 2020
2:30-4:00 PM
Virtual
https://lsa.umich.edu/cscs/news-events/all-events.detail.html/78499-20052321.html
Steven Strogatz, Applied Mathematics, Cornell University
Tuesday, November 17, 2020
2:30-4:00 PM
Virtual
https://lsa.umich.edu/cscs/news-events/all-events.detail.html/78499-20052321.html
lsa.umich.edu
All Events | U-M LSA Center for the Study of Complex Systems
Consistency and identifiability of football teams: a network science perspective
https://www.nature.com/articles/s41598-020-76835-3
https://www.nature.com/articles/s41598-020-76835-3
💰 Interested in doing population-scale social network analysis? There are now two #PhD positions and one #Postdoc position in computational social sciences available @UvA_Amsterdam! Deadline is December 3.
https://t.co/HkUf8ObZeg
https://t.co/HkUf8ObZeg
Using agent-based simulations, it shows that two network intervention strategies that divide or balance social groups can substantially reduce SARS-CoV-2 transmission while preserving the economy. https://t.co/3jGVV4OSM4
PNAS
Network interventions for managing the COVID-19 pandemic and sustaining economy
It has been challenging to identify nonpharmaceutical intervention strategies that reconcile two conflicting aims: Reducing the spread of infections while maintaining economic activities amid the coronavirus disease 2019 (COVID-19) pandemic. Commonly implemented…
💻 A machine learning tool called diffusion-maps has been used to identify topological phase transitions in experimental data.
https://physicsworld.com/a/machine-learning-spots-topological-phase-transitions-in-experimental-data/
https://physicsworld.com/a/machine-learning-spots-topological-phase-transitions-in-experimental-data/
Physics World
Machine learning spots topological phase transitions in experimental data
Diffusion-maps method needs no prior knowledge about a physical system
🦠 مردم بیشتر در چه مکانهایی به کرونا مبتلا شدند؟!
مقالهای در نیچر گزارش میده که عمده ابتلاها در مکانهای کوچیک مثل - به ترتیب - رستورانها، باشگاههای ورزشی، کافهها و هتلها بوده. آمار ابتلا در رستورانها و غذاخوریهای عمومی در صدر جدول و ۴ برابر بیشتر از بقیه بوده.
https://t.co/WO4E0PMcp9
مقالهای در نیچر گزارش میده که عمده ابتلاها در مکانهای کوچیک مثل - به ترتیب - رستورانها، باشگاههای ورزشی، کافهها و هتلها بوده. آمار ابتلا در رستورانها و غذاخوریهای عمومی در صدر جدول و ۴ برابر بیشتر از بقیه بوده.
https://t.co/WO4E0PMcp9
NY Times
Limiting Indoor Capacity Can Reduce Covid Infections Significantly, New Study Shows
Research using cellphone data in 10 U.S. cities last spring could help influence officials’ decisions on new restrictions as cases resurge around the country.
This week's paper is a novel approach to describe an "individual" in Biology without relying on features like cell membrane, but instead on a mathematical formulation that takes into account the information propagated in time.
You can read the annotated paper by David's Krakauer et al here: https://t.co/QuPd7A8m65
You can read the annotated paper by David's Krakauer et al here: https://t.co/QuPd7A8m65