Python | Machine Learning | Coding | R
67.8K subscribers
1.26K photos
92 videos
156 files
919 links
Help and ads: @hussein_sheikho

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

List of our channels:
https://t.iss.one/addlist/8_rRW2scgfRhOTc0

https://telega.io/?r=nikapsOH
Download Telegram
import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B', 'A']})
print(df.groupby('Team').size())

Team
A 3
B 2
dtype: int64


#49. groupby.count()
Computes the count of non-NA cells for each group.

import pandas as pd
import numpy as np
df = pd.DataFrame({'Team': ['A', 'B', 'A'], 'Score': [1, np.nan, 3]})
print(df.groupby('Team').count())

Score
Team
A 2
B 0


#50. groupby.mean()
Computes the mean of group values.

import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B'], 'Points': [10, 8, 12, 6]})
print(df.groupby('Team').mean())

Points
Team
A 11
B 7


#51. groupby.sum()
Computes the sum of group values.

import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B'], 'Points': [10, 8, 12, 6]})
print(df.groupby('Team').sum())

Points
Team
A 22
B 14


#52. groupby.min()
Computes the minimum of group values.

import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B'], 'Points': [10, 8, 12, 6]})
print(df.groupby('Team').min())

Points
Team
A 10
B 6


#53. groupby.max()
Computes the maximum of group values.

import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B'], 'Points': [10, 8, 12, 6]})
print(df.groupby('Team').max())

Points
Team
A 12
B 8


#54. df.pivot_table()
Creates a spreadsheet-style pivot table as a DataFrame.

import pandas as pd
df = pd.DataFrame({'A': ['foo', 'foo', 'bar'], 'B': ['one', 'two', 'one'], 'C': [1, 2, 3]})
pivot = df.pivot_table(values='C', index='A', columns='B')
print(pivot)

B    one  two
A
bar 3.0 NaN
foo 1.0 2.0


#55. pd.crosstab()
Computes a cross-tabulation of two (or more) factors.

import pandas as pd
df = pd.DataFrame({'A': ['foo', 'foo', 'bar'], 'B': ['one', 'two', 'one']})
crosstab = pd.crosstab(df.A, df.B)
print(crosstab)

B    one  two
A
bar 1 0
foo 1 1

---
#DataAnalysis #Pandas #Merging #Joining

Part 5: Pandas - Merging & Concatenating

#56. pd.merge()
Merges DataFrame or named Series objects with a database-style join.

import pandas as pd
df1 = pd.DataFrame({'key': ['A', 'B'], 'val1': [1, 2]})
df2 = pd.DataFrame({'key': ['A', 'B'], 'val2': [3, 4]})
merged = pd.merge(df1, df2, on='key')
print(merged)

key  val1  val2
0 A 1 3
1 B 2 4


#57. pd.concat()
Concatenates pandas objects along a particular axis.

import pandas as pd
df1 = pd.DataFrame({'A': [1, 2]})
df2 = pd.DataFrame({'A': [3, 4]})
concatenated = pd.concat([df1, df2])
print(concatenated)

A
0 1
1 2
0 3
1 4


#58. df.join()
Joins columns with other DataFrame(s) on index or on a key column.
2🎉1
import pandas as pd
df1 = pd.DataFrame({'val1': [1, 2]}, index=['A', 'B'])
df2 = pd.DataFrame({'val2': [3, 4]}, index=['A', 'B'])
joined = df1.join(df2)
print(joined)

val1  val2
A 1 3
B 2 4


#59. pd.get_dummies()
Converts categorical variable into dummy/indicator variables (one-hot encoding).

import pandas as pd
s = pd.Series(list('abca'))
dummies = pd.get_dummies(s)
print(dummies)

a  b  c
0 1 0 0
1 0 1 0
2 0 0 1
3 1 0 0


#60. df.nlargest()
Returns the first n rows ordered by columns in descending order.

import pandas as pd
df = pd.DataFrame({'population': [100, 500, 200, 800]})
print(df.nlargest(2, 'population'))

population
3 800
1 500

---
#DataAnalysis #NumPy #Arrays

Part 6: NumPy - Array Creation & Manipulation

#61. np.array()
Creates a NumPy ndarray.

import numpy as np
arr = np.array([1, 2, 3])
print(arr)

[1 2 3]


#62. np.arange()
Returns an array with evenly spaced values within a given interval.

import numpy as np
arr = np.arange(0, 5)
print(arr)

[0 1 2 3 4]


#63. np.linspace()
Returns an array with evenly spaced numbers over a specified interval.

import numpy as np
arr = np.linspace(0, 10, 5)
print(arr)

[ 0.   2.5  5.   7.5 10. ]


#64. np.zeros()
Returns a new array of a given shape and type, filled with zeros.

import numpy as np
arr = np.zeros((2, 3))
print(arr)

[[0. 0. 0.]
[0. 0. 0.]]


#65. np.ones()
Returns a new array of a given shape and type, filled with ones.

import numpy as np
arr = np.ones((2, 3))
print(arr)

[[1. 1. 1.]
[1. 1. 1.]]


#66. np.random.rand()
Creates an array of the given shape and populates it with random samples from a uniform distribution over [0, 1).

import numpy as np
arr = np.random.rand(2, 2)
print(arr)

[[0.13949386 0.2921446 ]
[0.52273283 0.77122228]]
(Note: Output values will be random)


#67. arr.reshape()
Gives a new shape to an array without changing its data.

import numpy as np
arr = np.arange(6)
reshaped_arr = arr.reshape((2, 3))
print(reshaped_arr)

[[0 1 2]
[3 4 5]]


#68. np.concatenate()
Joins a sequence of arrays along an existing axis.

import numpy as np
a = np.array([[1, 2]])
b = np.array([[3, 4]])
print(np.concatenate((a, b), axis=0))

[[1 2]
[3 4]]


#69. np.vstack()
Stacks arrays in sequence vertically (row wise).

import numpy as np
a = np.array([1, 2])
b = np.array([3, 4])
print(np.vstack((a, b)))

[[1 2]
[3 4]]


#70. np.hstack()
Stacks arrays in sequence horizontally (column wise).

import numpy as np
a = np.array([1, 2])
b = np.array([3, 4])
print(np.hstack((a, b)))

[1 2 3 4]

---
#DataAnalysis #NumPy #Math #Statistics

Part 7: NumPy - Mathematical & Statistical Functions

#71. np.mean()
Computes the arithmetic mean along the specified axis.

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(np.mean(arr))

3.0


#72. np.median()
Computes the median along the specified axis.

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(np.median(arr))

3.0


#73. np.std()
Computes the standard deviation along the specified axis.
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(np.std(arr))

1.4142135623730951


#74. np.sum()
Sums array elements over a given axis.

import numpy as np
arr = np.array([[1, 2], [3, 4]])
print(np.sum(arr))

10


#75. np.min()
Returns the minimum of an array or minimum along an axis.

import numpy as np
arr = np.array([5, 2, 8, 1])
print(np.min(arr))

1


#76. np.max()
Returns the maximum of an array or maximum along an axis.

import numpy as np
arr = np.array([5, 2, 8, 1])
print(np.max(arr))

8


#77. np.sqrt()
Returns the non-negative square-root of an array, element-wise.

import numpy as np
arr = np.array([4, 9, 16])
print(np.sqrt(arr))

[2. 3. 4.]


#78. np.log()
Calculates the natural logarithm, element-wise.

import numpy as np
arr = np.array([1, np.e, np.e**2])
print(np.log(arr))

[0. 1. 2.]


#79. np.dot()
Calculates the dot product of two arrays.

import numpy as np
a = np.array([1, 2])
b = np.array([3, 4])
print(np.dot(a, b))

11


#80. np.where()
Returns elements chosen from x or y depending on a condition.

import numpy as np
arr = np.array([10, 5, 20, 15])
print(np.where(arr > 12, 'High', 'Low'))

['Low' 'Low' 'High' 'High']

---
#DataAnalysis #Matplotlib #Seaborn #Visualization

Part 8: Matplotlib & Seaborn - Data Visualization

#81. plt.plot()
Plots y versus x as lines and/or markers.

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4], [1, 4, 9, 16])
# In a real script, you would call plt.show()
print("Output: A figure window opens displaying a line plot.")

Output: A figure window opens displaying a line plot.


#82. plt.scatter()
A scatter plot of y vs. x with varying marker size and/or color.

import matplotlib.pyplot as plt
plt.scatter([1, 2, 3, 4], [1, 4, 9, 16])
print("Output: A figure window opens displaying a scatter plot.")

Output: A figure window opens displaying a scatter plot.


#83. plt.hist()
Computes and draws the histogram of x.

import matplotlib.pyplot as plt
import numpy as np
data = np.random.randn(1000)
plt.hist(data, bins=30)
print("Output: A figure window opens displaying a histogram.")

Output: A figure window opens displaying a histogram.


#84. plt.bar()
Makes a bar plot.

import matplotlib.pyplot as plt
plt.bar(['A', 'B', 'C'], [10, 15, 7])
print("Output: A figure window opens displaying a bar chart.")

Output: A figure window opens displaying a bar chart.


#85. plt.boxplot()
Makes a box and whisker plot.

import matplotlib.pyplot as plt
import numpy as np
data = [np.random.normal(0, std, 100) for std in range(1, 4)]
plt.boxplot(data)
print("Output: A figure window opens displaying a box plot.")

Output: A figure window opens displaying a box plot.


#86. sns.heatmap()
Plots rectangular data as a color-encoded matrix.

import seaborn as sns
import numpy as np
data = np.random.rand(10, 12)
sns.heatmap(data)
print("Output: A figure window opens displaying a heatmap.")

Output: A figure window opens displaying a heatmap.


#87. sns.pairplot()
Plots pairwise relationships in a dataset.
5
import seaborn as sns
import pandas as pd
df = pd.DataFrame(np.random.randn(100, 4), columns=['A', 'B', 'C', 'D'])
# sns.pairplot(df) # This line would generate the plot
print("Output: A figure grid opens showing scatterplots for each pair of variables.")

Output: A figure grid opens showing scatterplots for each pair of variables.


#88. sns.countplot()
Shows the counts of observations in each categorical bin using bars.

import seaborn as sns
import pandas as pd
df = pd.DataFrame({'category': ['A', 'B', 'A', 'C', 'A', 'B']})
sns.countplot(x='category', data=df)
print("Output: A figure window opens showing a count plot.")

Output: A figure window opens showing a count plot.


#89. sns.jointplot()
Draws a plot of two variables with bivariate and univariate graphs.

import seaborn as sns
import pandas as pd
df = pd.DataFrame({'x': range(50), 'y': range(50) + np.random.randn(50)})
# sns.jointplot(x='x', y='y', data=df) # This line would generate the plot
print("Output: A figure shows a scatter plot with histograms for each axis.")

Output: A figure shows a scatter plot with histograms for each axis.


#90. plt.show()
Displays all open figures.

import matplotlib.pyplot as plt
plt.plot([1, 2, 3])
# plt.show() # In a script, this is essential to see the plot.
print("Executes the command to render and display the plot.")

Executes the command to render and display the plot.

---
#DataAnalysis #ScikitLearn #Modeling #Preprocessing

Part 9: Scikit-learn - Modeling & Preprocessing

#91. train_test_split()
Splits arrays or matrices into random train and test subsets.

from sklearn.model_selection import train_test_split
import numpy as np
X, y = np.arange(10).reshape((5, 2)), range(5)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
print(f"X_train shape: {X_train.shape}")
print(f"X_test shape: {X_test.shape}")

X_train shape: (3, 2)
X_test shape: (2, 2)


#92. StandardScaler()
Standardizes features by removing the mean and scaling to unit variance.

from sklearn.preprocessing import StandardScaler
data = [[0, 0], [0, 0], [1, 1], [1, 1]]
scaler = StandardScaler()
print(scaler.fit_transform(data))

[[-1. -1.]
[-1. -1.]
[ 1. 1.]
[ 1. 1.]]


#93. MinMaxScaler()
Transforms features by scaling each feature to a given range, typically [0, 1].

from sklearn.preprocessing import MinMaxScaler
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
scaler = MinMaxScaler()
print(scaler.fit_transform(data))

[[0.   0.  ]
[0.25 0.25]
[0.5 0.5 ]
[1. 1. ]]


#94. LabelEncoder()
Encodes target labels with values between 0 and n_classes-1.

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
encoded = le.fit_transform(['paris', 'tokyo', 'paris'])
print(encoded)

[0 1 0]


#95. OneHotEncoder()
Encodes categorical features as a one-hot numeric array.

from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder()
X = [['Male'], ['Female'], ['Female']]
print(enc.fit_transform(X).toarray())

[[0. 1.]
[1. 0.]
[1. 0.]]


#96. LinearRegression()
Ordinary least squares Linear Regression model.

from sklearn.linear_model import LinearRegression
X = [[0], [1], [2]]
y = [0, 1, 2]
reg = LinearRegression().fit(X, y)
print(f"Coefficient: {reg.coef_[0]}")
2
🤖🧠 PokeeResearch: Advancing Deep Research with AI and Web-Integrated Intelligence

🗓️ 09 Nov 2025
📚 AI News & Trends

In the modern information era, the ability to research fast, accurately and at scale has become a competitive advantage for businesses, researchers, analysts and developers. As online data expands exponentially, traditional search engines and manual research workflows are no longer sufficient to gather reliable insights efficiently. This need has fueled the rise of AI research ...

#AIResearch #DeepResearch #WebIntelligence #ArtificialIntelligence #ResearchAutomation #DataAnalysis
2🔥1