๐๐ฒ๐ฒ๐ฝ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด skills.pdf
14.5 MB
Deep Learning roadmap. Now itโs your turn!
๐ฃ๐ต๐ฎ๐๐ฒ ๐ญ: ๐ก๐ฒ๐๐ฟ๐ฎ๐น ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ ๐๐ผ๐๐ป๐ฑ๐ฎ๐๐ถ๐ผ๐ป๐ (๐ช๐ฒ๐ฒ๐ธ ๐ญ-๐ฎ)
โ Understand perceptrons, sigmoid, ReLU, tanh
โ Learn cost functions, gradient descent, and derivatives
โ Implement binary logistic regression using NumPy
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฎ: ๐ฆ๐ต๐ฎ๐น๐น๐ผ๐ ๐ก๐ฒ๐๐ฟ๐ฎ๐น ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ๐ (๐ช๐ฒ๐ฒ๐ธ ๐ฏ-๐ฐ)
โ Build a neural net with one hidden layer
โ Compare activation functions (sigmoid vs tanh vs ReLU)
โ Train your model to classify simple images
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฏ: ๐๐ฒ๐ฒ๐ฝ ๐ก๐ฒ๐๐ฟ๐ฎ๐น ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ๐ (๐ช๐ฒ๐ฒ๐ธ ๐ฑ-๐ฒ)
โ Forward and backward propagation through multiple layers
โ Parameter initialization and tuning
โ Implement L-layer neural networks from scratch
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฐ: ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป & ๐ฅ๐ฒ๐ด๐๐น๐ฎ๐ฟ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป (๐ช๐ฒ๐ฒ๐ธ ๐ณ-๐ด)
โ Learn mini-batch gradient descent, RMSProp, and Adam
โ Apply L2 and Dropout regularization to avoid overfitting
โ Boost your modelโs performance with better convergence
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฑ: ๐ง๐ฒ๐ป๐๐ผ๐ฟ๐๐น๐ผ๐ & ๐ฅ๐ฒ๐ฎ๐น ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ (๐ช๐ฒ๐ฒ๐ธ ๐ต-๐ญ๐ฌ)
โ Build models using TensorFlow and Keras
โ Normalize data, tune hyperparameters, and visualize metrics
โ Create multi-class classifiers using softmax
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฒ: ๐ฅ๐ฒ๐ฎ๐น-๐ช๐ผ๐ฟ๐น๐ฑ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ & ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ฃ๐ฟ๐ฒ๐ฝ (๐ช๐ฒ๐ฒ๐ธ ๐ญ๐ญ-๐ญ๐ฎ)
โ Work on image recognition, text classification, and real datasets
โ Learn model deployment techniques
โ Prepare for interviews with hands-on projects and GitHub repo
https://t.iss.one/CodeProgrammerโ๏ธ
๐ฃ๐ต๐ฎ๐๐ฒ ๐ญ: ๐ก๐ฒ๐๐ฟ๐ฎ๐น ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ ๐๐ผ๐๐ป๐ฑ๐ฎ๐๐ถ๐ผ๐ป๐ (๐ช๐ฒ๐ฒ๐ธ ๐ญ-๐ฎ)
โ Understand perceptrons, sigmoid, ReLU, tanh
โ Learn cost functions, gradient descent, and derivatives
โ Implement binary logistic regression using NumPy
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฎ: ๐ฆ๐ต๐ฎ๐น๐น๐ผ๐ ๐ก๐ฒ๐๐ฟ๐ฎ๐น ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ๐ (๐ช๐ฒ๐ฒ๐ธ ๐ฏ-๐ฐ)
โ Build a neural net with one hidden layer
โ Compare activation functions (sigmoid vs tanh vs ReLU)
โ Train your model to classify simple images
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฏ: ๐๐ฒ๐ฒ๐ฝ ๐ก๐ฒ๐๐ฟ๐ฎ๐น ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ๐ (๐ช๐ฒ๐ฒ๐ธ ๐ฑ-๐ฒ)
โ Forward and backward propagation through multiple layers
โ Parameter initialization and tuning
โ Implement L-layer neural networks from scratch
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฐ: ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป & ๐ฅ๐ฒ๐ด๐๐น๐ฎ๐ฟ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป (๐ช๐ฒ๐ฒ๐ธ ๐ณ-๐ด)
โ Learn mini-batch gradient descent, RMSProp, and Adam
โ Apply L2 and Dropout regularization to avoid overfitting
โ Boost your modelโs performance with better convergence
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฑ: ๐ง๐ฒ๐ป๐๐ผ๐ฟ๐๐น๐ผ๐ & ๐ฅ๐ฒ๐ฎ๐น ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ (๐ช๐ฒ๐ฒ๐ธ ๐ต-๐ญ๐ฌ)
โ Build models using TensorFlow and Keras
โ Normalize data, tune hyperparameters, and visualize metrics
โ Create multi-class classifiers using softmax
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฒ: ๐ฅ๐ฒ๐ฎ๐น-๐ช๐ผ๐ฟ๐น๐ฑ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ & ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ฃ๐ฟ๐ฒ๐ฝ (๐ช๐ฒ๐ฒ๐ธ ๐ญ๐ญ-๐ญ๐ฎ)
โ Work on image recognition, text classification, and real datasets
โ Learn model deployment techniques
โ Prepare for interviews with hands-on projects and GitHub repo
https://t.iss.one/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค10๐1
๐ Model Context Protocol (MCP) Curriculum for Beginners
Learn MCP with Hands-on Code Examples in C#, Java, JavaScript, Python, and TypeScript
๐ง Overview of the Model Context Protocol Curriculum
The Model Context Protocol (MCP) is an innovative framework designed to standardize communication between AI models and client applications. This open-source curriculum provides a structured learning path, featuring practical coding examples and real-world scenarios across popular programming languages such as C#, Java, JavaScript, TypeScript, and Python.
Whether you're an AI developer, system architect, or software engineer, this guide is your all-in-one resource for mastering MCP fundamentals and implementation techniques.
Resources: https://github.com/microsoft/mcp-for-beginners/blob/main/translations/en/README.md
https://t.iss.one/CodeProgrammerโญ๏ธ
Learn MCP with Hands-on Code Examples in C#, Java, JavaScript, Python, and TypeScript
๐ง Overview of the Model Context Protocol Curriculum
The Model Context Protocol (MCP) is an innovative framework designed to standardize communication between AI models and client applications. This open-source curriculum provides a structured learning path, featuring practical coding examples and real-world scenarios across popular programming languages such as C#, Java, JavaScript, TypeScript, and Python.
Whether you're an AI developer, system architect, or software engineer, this guide is your all-in-one resource for mastering MCP fundamentals and implementation techniques.
Resources: https://github.com/microsoft/mcp-for-beginners/blob/main/translations/en/README.md
https://t.iss.one/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4๐1
This media is not supported in your browser
VIEW IN TELEGRAM
LangExtract
A Python library for extracting structured information from unstructured text using LLMs with precise source grounding and interactive visualization.
GitHub: https://github.com/google/langextract
https://t.iss.one/DataScienceN๐
A Python library for extracting structured information from unstructured text using LLMs with precise source grounding and interactive visualization.
GitHub: https://github.com/google/langextract
https://t.iss.one/DataScienceN
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4
Microsoft launched the best course on Generative AI!
The Free 21 lesson course is available on #Github and will teach you everything you need to know to start building #GenerativeAI applications.
Enroll: https://github.com/microsoft/generative-ai-for-beginners
https://github.com/microsoft/generative-ai-for-beginners
https://t.iss.one/CodeProgrammer๐ฉท
The Free 21 lesson course is available on #Github and will teach you everything you need to know to start building #GenerativeAI applications.
Enroll: https://github.com/microsoft/generative-ai-for-beginners
https://github.com/microsoft/generative-ai-for-beginners
https://t.iss.one/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค6
This media is not supported in your browser
VIEW IN TELEGRAM
#LSTMs made AI remember before #Transformers took over
hereโs the 15-step by-hand โ๏ธ guide
you can download: https://www.byhand.ai/p/26-lstm
https://t.iss.one/CodeProgrammer
hereโs the 15-step by-hand โ๏ธ guide
you can download: https://www.byhand.ai/p/26-lstm
https://t.iss.one/CodeProgrammer
โค3
Grab these free AI courses before they get paywalled:
๐ญ. Prompt Engineering Basics:
https://skillbuilder.aws/search?searchText=foundations-of-prompt-engineering&showRedirectNotFoundBanner=true
๐ฎ. ChatGPT Prompts Mastery:
https://deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
๐ฏ. Intro to Generative AI:
https://cloudskillsboost.google/course_templates/536
๐ฐ. AI Introduction by Harvard:
https://pll.harvard.edu/course/cs50s-introduction-artificial-intelligence-python/2023-05
๐ฑ. Microsoft GenAI Basics:
https://linkedin.com/learning/what-is-generative-ai/generative-ai-is-a-tool-in-service-of-humanity
๐ฒ. Prompt Engineering Pro:
https://learnprompting.org
๐ณ. Googleโs Ethical AI:
https://cloudskillsboost.google/course_templates/554
๐ด. Harvard Machine Learning:
https://pll.harvard.edu/course/data-science-machine-learning
๐ต. LangChain App Developer:
https://deeplearning.ai/short-courses/langchain-for-llm-application-development/
๐ญ๐ฌ. Bing Chat Applications:
https://linkedin.com/learning/streamlining-your-work-with-microsoft-bing-chat
๐ญ๐ญ. Generative AI by Microsoft:
https://learn.microsoft.com/en-us/training/paths/introduction-to-ai-on-azure/
๐ญ๐ฎ. Amazonโs AI Strategy:
https://skillbuilder.aws/search?searchText=generative-ai-learning-plan-for-decision-makers&showRedirectNotFoundBanner=true
๐ญ๐ฏ. GenAI for Everyone:
https://deeplearning.ai/courses/generative-ai-for-everyone/
๐ญ๐ฐ. AWS GenAI Foundation:
https://coursera.org/learn/generative-ai-with-llms
https://t.iss.one/CodeProgrammer๐ฐ
๐ญ. Prompt Engineering Basics:
https://skillbuilder.aws/search?searchText=foundations-of-prompt-engineering&showRedirectNotFoundBanner=true
๐ฎ. ChatGPT Prompts Mastery:
https://deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
๐ฏ. Intro to Generative AI:
https://cloudskillsboost.google/course_templates/536
๐ฐ. AI Introduction by Harvard:
https://pll.harvard.edu/course/cs50s-introduction-artificial-intelligence-python/2023-05
๐ฑ. Microsoft GenAI Basics:
https://linkedin.com/learning/what-is-generative-ai/generative-ai-is-a-tool-in-service-of-humanity
๐ฒ. Prompt Engineering Pro:
https://learnprompting.org
๐ณ. Googleโs Ethical AI:
https://cloudskillsboost.google/course_templates/554
๐ด. Harvard Machine Learning:
https://pll.harvard.edu/course/data-science-machine-learning
๐ต. LangChain App Developer:
https://deeplearning.ai/short-courses/langchain-for-llm-application-development/
๐ญ๐ฌ. Bing Chat Applications:
https://linkedin.com/learning/streamlining-your-work-with-microsoft-bing-chat
๐ญ๐ญ. Generative AI by Microsoft:
https://learn.microsoft.com/en-us/training/paths/introduction-to-ai-on-azure/
๐ญ๐ฎ. Amazonโs AI Strategy:
https://skillbuilder.aws/search?searchText=generative-ai-learning-plan-for-decision-makers&showRedirectNotFoundBanner=true
๐ญ๐ฏ. GenAI for Everyone:
https://deeplearning.ai/courses/generative-ai-for-everyone/
๐ญ๐ฐ. AWS GenAI Foundation:
https://coursera.org/learn/generative-ai-with-llms
https://t.iss.one/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4๐1
๐ 16th AI by Hand โ๏ธ Workshops, Scholarships available ๐ https://lu.ma/te2q2zqu
Every Wednesday weโve been bringing people together to learn AI by hand โ๏ธ.
Next week marks our 16th workshop, and thanks to Googleโs generous sponsorship, weโre offering scholarships for educators and students to join us.
Choose your session:
๐ Deep Learning Beginner Math Workshop
Build the math foundation for deep learning:
1. Dot Product
2. Matrix Multiplication
3. Linear Layer
4. Activation
5. Artificial Neuron
๐ ๐ Transformer in Excel Workshop (Intermediate)
For AI engineers who know how to use Transformers but want to open the black box. Weโll visualize every stepโdata flow, math, and dimension alignmentโinside Excel.
๐ ๐ ๐ Latest AI Paper Workshop (Advanced)
Work through a just-published model, architecture, or algorithm with brand-new AI by Hand exercisesโcrafted for this workshop only.
๐ ๐ ๐ Deep Reinforcement Learning Workshop (Advanced)
From replay buffers to Monte Carlo, TD learning, Deep Q-Networks, and SARSAโunderstand value-based deep RL from the ground up.
๐ When: Every Wednesday
๐ Scholarships: Available for educators & students (sponsored by Google)
Register ๐ https://lu.ma/te2q2zqu
Every Wednesday weโve been bringing people together to learn AI by hand โ๏ธ.
Next week marks our 16th workshop, and thanks to Googleโs generous sponsorship, weโre offering scholarships for educators and students to join us.
Choose your session:
๐ Deep Learning Beginner Math Workshop
Build the math foundation for deep learning:
1. Dot Product
2. Matrix Multiplication
3. Linear Layer
4. Activation
5. Artificial Neuron
๐ ๐ Transformer in Excel Workshop (Intermediate)
For AI engineers who know how to use Transformers but want to open the black box. Weโll visualize every stepโdata flow, math, and dimension alignmentโinside Excel.
๐ ๐ ๐ Latest AI Paper Workshop (Advanced)
Work through a just-published model, architecture, or algorithm with brand-new AI by Hand exercisesโcrafted for this workshop only.
๐ ๐ ๐ Deep Reinforcement Learning Workshop (Advanced)
From replay buffers to Monte Carlo, TD learning, Deep Q-Networks, and SARSAโunderstand value-based deep RL from the ground up.
๐ When: Every Wednesday
๐ Scholarships: Available for educators & students (sponsored by Google)
Register ๐ https://lu.ma/te2q2zqu
๐3โค2