Machine Learning with Python
68.5K subscribers
1.31K photos
100 videos
173 files
974 links
Learn Machine Learning with hands-on Python tutorials, real-world code examples, and clear explanations for researchers and developers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
All assignments for the #Stanford The Modern Software Developer course are now available online.

This is the first full-fledged university course that covers how code-generative #LLMs are changing every stage of the development lifecycle. The assignments are designed to take you from a beginner to a confident expert in using AI to boost productivity in development.

Enjoy your studies! โœŒ๏ธ
https://github.com/mihail911/modern-software-dev-assignments

https://t.iss.one/CodeProgrammer
โค5๐Ÿ‘4
Awesome open-source project to learn more about Generative Adversarial Networks.

We found this interactive website that shows you visually how #GANs work.

GAN Lab Website: https://lnkd.in/eYV8QvrJ

https://t.iss.one/CodeProgrammer ๐Ÿฉท
Please open Telegram to view this post
VIEW IN TELEGRAM
โค8
Forwarded from Learn Python Hub
Media is too big
VIEW IN TELEGRAM
Learn how LLMs work in less than 10 minutes
And honestly? This is probably the best visualization of #LLMs ever made.

https://t.iss.one/Python53
โค9
๐Ÿ“ฑ A collection of videos on PyTorch and neural networks

This is not a full-fledged course with a unified program, but a collection of nine separate videos on PyTorch and neural networks gathered in one playlist.

Inside, there are materials of different levels and formats that are suitable for selective study of topics, practice, and a general understanding of the direction.

What's here:
๐Ÿฎ Introductory videos on PyTorch and the basics of neural networks;

๐Ÿฎ Practical analyses with code writing and project examples;

๐Ÿฎ Materials on computer vision and working with medical images;

๐Ÿฎ Examples of creating chat bots and models on PyTorch;

๐Ÿฎ Analyses of large language models and generative neural networks;

๐Ÿฎ Examples of training agents and reinforcement tasks;

๐Ÿฎ Videos from different authors without a general learning logic.
The collection is suitable for those who are already familiar with Python and want to selectively study PyTorch without a strict study plan โ€” get it here.

https://www.youtube.com/playlist?list=PLp0BA-8NZ4bhBNWvUBPDztbzLar9Jcgd-


tags: #pytorch #DeepLearning #python

โžก @CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค9๐ŸŽ‰2๐Ÿ”ฅ1
Forwarded from Machine Learning
๐Ÿ”– 40 NumPy methods that cover 95% of tasks

A convenient cheat sheet for those who work with data analysis and ML.

Here are collected the main functions for:
โ–ถ๏ธ Creating and modifying arrays;
โ–ถ๏ธ Mathematical operations;
โ–ถ๏ธ Working with matrices and vectors;
โ–ถ๏ธ Sorting and searching for values.


Save it for yourself โ€” it will come in handy when working with NumPy.

tags: #NumPy #Python

โžก @DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค9๐Ÿ‘2
Media is too big
VIEW IN TELEGRAM
OnSpace Mobile App builder: Build AI Apps in minutes

Visit website: https://www.onspace.ai/?via=tg_datas
Or Download app:https://onspace.onelink.me/za8S/h1jb6sb9?c=datas

With OnSpace, you can build website or AI Mobile Apps by chatting with AI, and publish to PlayStore or AppStore.

What will you get:
โœ”๏ธ Create app or website by chatting with AI;
โœ”๏ธ Integrate with Any top AI power just by giving order (like Sora2, Nanobanan Pro & Gemini 3 Pro);
โœ”๏ธ Download APK,AAB file, publish to AppStore.
โœ”๏ธ Add payments and monetize like in-app-purchase and Stripe.
โœ”๏ธ Functional login & signup.
โœ”๏ธ Database + dashboard in minutes.
โœ”๏ธ Full tutorial on YouTube and within 1 day customer service
Please open Telegram to view this post
VIEW IN TELEGRAM
โค6๐Ÿ”ฅ2
This media is not supported in your browser
VIEW IN TELEGRAM
ML engineers, this is for you: an interactive math tutorial for machine learning

Recently, they posted several more blogs on the basics of mathematical analysis for machine learning, with interactive simulations.

Among the topics:

- backprop and gradient descent
- local minima and saddle points
- vector fields
- Taylor series
- Jacobian and Hessian
- partial derivatives

The material is specifically focused on the ML context, with an emphasis on clarity and practical understanding. โœŒ๏ธ

Let's practice here

๐Ÿ‘‰ @codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค5
This media is not supported in your browser
VIEW IN TELEGRAM
For beginners: a free online course on Python programming

On the site, you can run code directly in the browser, solve problems, and learn the basics of the language step by step

Start your improvement ๐Ÿ‘

๐Ÿ‘‰ @codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค6๐Ÿ‘2
nature papers: 1400$

Q1 and  Q2 papers    900$

Q3 and Q4 papers   500$

Doctoral thesis (complete)    700$

M.S thesis         300$

paper simulation   200$

Contact me
https://t.iss.one/m/-nTmpj5vYzNk
โค2
๐’๐ฎ๐ฉ๐ฉ๐จ๐ซ๐ญ_๐•๐ž๐œ๐ญ๐จ๐ซ_๐Œ๐š๐œ๐ก๐ข๐ง๐ž๐ฌ_๐’๐•๐Œโฃ.pdf
5.8 MB
๐Ÿ“ ๐’๐ฎ๐ฉ๐ฉ๐จ๐ซ๐ญ ๐•๐ž๐œ๐ญ๐จ๐ซ ๐Œ๐š๐œ๐ก๐ข๐ง๐ž๐ฌ (๐’๐•๐Œ)โฃ

๐Ÿ”น What I covered todayโฃ
What SVM is and how it worksโฃ
Concept of hyperplane, margin, and support vectorsโฃ
Hard margin vs Soft marginโฃ
Role of kernel trickโฃ
โฃ
When SVM performs better than other classifiersโฃ
โฃ
๐ŸŽฏ ๐“๐จ๐ฉ ๐Ÿ๐ŸŽ ๐ˆ๐ง๐ญ๐ž๐ซ๐ฏ๐ข๐ž๐ฐ ๐๐ฎ๐ž๐ฌ๐ญ๐ข๐จ๐ง๐ฌ (๐Œ๐ฎ๐ฌ๐ญ-๐Š๐ง๐จ๐ฐ)โฃ
โฃ
1๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜š๐˜ถ๐˜ฑ๐˜ฑ๐˜ฐ๐˜ณ๐˜ต ๐˜๐˜ฆ๐˜ค๐˜ต๐˜ฐ๐˜ณ ๐˜”๐˜ข๐˜ค๐˜ฉ๐˜ช๐˜ฏ๐˜ฆ (๐˜š๐˜๐˜”)?โฃ
2๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ข๐˜ณ๐˜ฆ ๐˜ด๐˜ถ๐˜ฑ๐˜ฑ๐˜ฐ๐˜ณ๐˜ต ๐˜ท๐˜ฆ๐˜ค๐˜ต๐˜ฐ๐˜ณ๐˜ด?โฃ
3๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜ข ๐˜ฎ๐˜ข๐˜ณ๐˜จ๐˜ช๐˜ฏ ๐˜ช๐˜ฏ ๐˜š๐˜๐˜”?โฃ
4๏ธโƒฃ ๐˜‹๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ค๐˜ฆ ๐˜ฃ๐˜ฆ๐˜ต๐˜ธ๐˜ฆ๐˜ฆ๐˜ฏ ๐˜ฉ๐˜ข๐˜ณ๐˜ฅ ๐˜ฎ๐˜ข๐˜ณ๐˜จ๐˜ช๐˜ฏ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ด๐˜ฐ๐˜ง๐˜ต ๐˜ฎ๐˜ข๐˜ณ๐˜จ๐˜ช๐˜ฏ?โฃ
5๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฌ๐˜ฆ๐˜ณ๐˜ฏ๐˜ฆ๐˜ญ ๐˜ต๐˜ณ๐˜ช๐˜ค๐˜ฌ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ธ๐˜ฉ๐˜บ ๐˜ช๐˜ด ๐˜ช๐˜ต ๐˜ฏ๐˜ฆ๐˜ฆ๐˜ฅ๐˜ฆ๐˜ฅ?โฃ
6๏ธโƒฃ ๐˜Š๐˜ฐ๐˜ฎ๐˜ฎ๐˜ฐ๐˜ฏ ๐˜ฌ๐˜ฆ๐˜ณ๐˜ฏ๐˜ฆ๐˜ญ๐˜ด ๐˜ถ๐˜ด๐˜ฆ๐˜ฅ ๐˜ช๐˜ฏ ๐˜š๐˜๐˜” (๐˜“๐˜ช๐˜ฏ๐˜ฆ๐˜ข๐˜ณ, ๐˜—๐˜ฐ๐˜ญ๐˜บ๐˜ฏ๐˜ฐ๐˜ฎ๐˜ช๐˜ข๐˜ญ, ๐˜™๐˜‰๐˜)?โฃ
7๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜ต๐˜ฉ๐˜ฆ ๐˜ณ๐˜ฐ๐˜ญ๐˜ฆ ๐˜ฐ๐˜ง ๐˜Š (๐˜ณ๐˜ฆ๐˜จ๐˜ถ๐˜ญ๐˜ข๐˜ณ๐˜ช๐˜ป๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜ฑ๐˜ข๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ต๐˜ฆ๐˜ณ)?โฃ
8๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜จ๐˜ข๐˜ฎ๐˜ฎ๐˜ข ๐˜ช๐˜ฏ ๐˜™๐˜‰๐˜ ๐˜ฌ๐˜ฆ๐˜ณ๐˜ฏ๐˜ฆ๐˜ญ?โฃ
9๏ธโƒฃ ๐˜Š๐˜ข๐˜ฏ #๐˜š๐˜๐˜” ๐˜ฃ๐˜ฆ ๐˜ถ๐˜ด๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ณ๐˜ฆ๐˜จ๐˜ณ๐˜ฆ๐˜ด๐˜ด๐˜ช๐˜ฐ๐˜ฏ? (๐˜š๐˜๐˜™)โฃ
๐Ÿ”Ÿ ๐˜ž๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ด๐˜ฉ๐˜ฐ๐˜ถ๐˜ญ๐˜ฅ ๐˜บ๐˜ฐ๐˜ถ ๐˜ข๐˜ท๐˜ฐ๐˜ช๐˜ฅ ๐˜ถ๐˜ด๐˜ช๐˜ฏ๐˜จ ๐˜š๐˜๐˜”?โฃ

https://t.iss.one/CodeProgrammer โœˆ๏ธ
Please open Telegram to view this post
VIEW IN TELEGRAM
โค6
This channels is for Programmers, Coders, Software Engineers.

0๏ธโƒฃ Python
1๏ธโƒฃ Data Science
2๏ธโƒฃ Machine Learning
3๏ธโƒฃ Data Visualization
4๏ธโƒฃ Artificial Intelligence
5๏ธโƒฃ Data Analysis
6๏ธโƒฃ Statistics
7๏ธโƒฃ Deep Learning
8๏ธโƒฃ programming Languages

โœ… https://t.iss.one/addlist/8_rRW2scgfRhOTc0

โœ… https://t.iss.one/Codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค5๐ŸŽ‰1
Forwarded from Machine Learning
Media is too big
VIEW IN TELEGRAM
The single most undervalued fact of linear algebra: matrices are graphs, and graphs are matrices.

Encoding matrices as graphs is a cheat code, making complex behavior simple to study.

https://t.iss.one/DataScienceM
โค4๐Ÿ‘4
๐Ÿ“ˆ_๐‹๐จ๐ ๐ข๐ฌ๐ญ๐ข๐œ_๐‘๐ž๐ ๐ซ๐ž๐ฌ๐ฌ๐ข๐จ๐งโฃโฃ.pdf
10.5 MB
๐Ÿ“ˆ ๐‹๐จ๐ ๐ข๐ฌ๐ญ๐ข๐œ ๐‘๐ž๐ ๐ซ๐ž๐ฌ๐ฌ๐ข๐จ๐งโฃโฃ

Why Logistic Regression is not regressionโฃโฃ
How Sigmoid (Logistic) function worksโฃโฃ
Binary vs Multiclass Logistic Regressionโฃโฃ
Decision boundaries and probability interpretationโฃโฃ
Where Logistic Regression beats complex modelsโฃโฃ
โฃโฃ
๐ŸŽฏ ๐“๐จ๐ฉ ๐Ÿ๐ŸŽ ๐ˆ๐ง๐ญ๐ž๐ซ๐ฏ๐ข๐ž๐ฐ ๐๐ฎ๐ž๐ฌ๐ญ๐ข๐จ๐ง๐ฌ (๐Œ๐ฎ๐ฌ๐ญ-๐Š๐ง๐จ๐ฐ)โฃโฃ
โฃโฃ
1๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜“๐˜ฐ๐˜จ๐˜ช๐˜ด๐˜ต๐˜ช๐˜ค ๐˜™๐˜ฆ๐˜จ๐˜ณ๐˜ฆ๐˜ด๐˜ด๐˜ช๐˜ฐ๐˜ฏ?โฃโฃ
2๏ธโƒฃ ๐˜ž๐˜ฉ๐˜บ ๐˜ช๐˜ด ๐˜“๐˜ฐ๐˜จ๐˜ช๐˜ด๐˜ต๐˜ช๐˜ค ๐˜™๐˜ฆ๐˜จ๐˜ณ๐˜ฆ๐˜ด๐˜ด๐˜ช๐˜ฐ๐˜ฏ ๐˜ถ๐˜ด๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ค๐˜ญ๐˜ข๐˜ด๐˜ด๐˜ช๐˜ง๐˜ช๐˜ค๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ, ๐˜ฏ๐˜ฐ๐˜ต ๐˜ณ๐˜ฆ๐˜จ๐˜ณ๐˜ฆ๐˜ด๐˜ด๐˜ช๐˜ฐ๐˜ฏ?โฃโฃ
3๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜ต๐˜ฉ๐˜ฆ ๐˜š๐˜ช๐˜จ๐˜ฎ๐˜ฐ๐˜ช๐˜ฅ ๐˜ง๐˜ถ๐˜ฏ๐˜ค๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ธ๐˜ฉ๐˜บ ๐˜ช๐˜ด ๐˜ช๐˜ต ๐˜ฏ๐˜ฆ๐˜ฆ๐˜ฅ๐˜ฆ๐˜ฅ?โฃโฃ
4๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜“๐˜ฐ๐˜จ ๐˜“๐˜ฐ๐˜ด๐˜ด / ๐˜Š๐˜ณ๐˜ฐ๐˜ด๐˜ด-๐˜Œ๐˜ฏ๐˜ต๐˜ณ๐˜ฐ๐˜ฑ๐˜บ ๐˜“๐˜ฐ๐˜ด๐˜ด?โฃโฃ
5๏ธโƒฃ ๐˜‹๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ค๐˜ฆ ๐˜ฃ๐˜ฆ๐˜ต๐˜ธ๐˜ฆ๐˜ฆ๐˜ฏ ๐˜“๐˜ฐ๐˜จ๐˜ช๐˜ด๐˜ต๐˜ช๐˜ค ๐˜™๐˜ฆ๐˜จ๐˜ณ๐˜ฆ๐˜ด๐˜ด๐˜ช๐˜ฐ๐˜ฏ ๐˜ข๐˜ฏ๐˜ฅ ๐˜“๐˜ช๐˜ฏ๐˜ฆ๐˜ข๐˜ณ ๐˜™๐˜ฆ๐˜จ๐˜ณ๐˜ฆ๐˜ด๐˜ด๐˜ช๐˜ฐ๐˜ฏ?โฃโฃ
6๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜ข ๐˜ฅ๐˜ฆ๐˜ค๐˜ช๐˜ด๐˜ช๐˜ฐ๐˜ฏ ๐˜ฃ๐˜ฐ๐˜ถ๐˜ฏ๐˜ฅ๐˜ข๐˜ณ๐˜บ?โฃโฃ
7๏ธโƒฃ ๐˜๐˜ฐ๐˜ธ ๐˜ฅ๐˜ฐ๐˜ฆ๐˜ด ๐˜™๐˜ฆ๐˜จ๐˜ถ๐˜ญ๐˜ข๐˜ณ๐˜ช๐˜ป๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ (๐˜“1 ๐˜ท๐˜ด ๐˜“2) ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ ๐˜ช๐˜ฏ ๐˜“๐˜ฐ๐˜จ๐˜ช๐˜ด๐˜ต๐˜ช๐˜ค ๐˜™๐˜ฆ๐˜จ๐˜ณ๐˜ฆ๐˜ด๐˜ด๐˜ช๐˜ฐ๐˜ฏ?โฃโฃ
8๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜–๐˜ฅ๐˜ฅ๐˜ด ๐˜™๐˜ข๐˜ต๐˜ช๐˜ฐ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ฉ๐˜ฐ๐˜ธ ๐˜ฅ๐˜ฐ ๐˜บ๐˜ฐ๐˜ถ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ณ๐˜ฑ๐˜ณ๐˜ฆ๐˜ต ๐˜ค๐˜ฐ๐˜ฆ๐˜ง๐˜ง๐˜ช๐˜ค๐˜ช๐˜ฆ๐˜ฏ๐˜ต๐˜ด?โฃโฃ
9๏ธโƒฃ ๐˜๐˜ฐ๐˜ธ ๐˜ฅ๐˜ฐ ๐˜บ๐˜ฐ๐˜ถ ๐˜ฉ๐˜ข๐˜ฏ๐˜ฅ๐˜ญ๐˜ฆ ๐˜ค๐˜ญ๐˜ข๐˜ด๐˜ด ๐˜ช๐˜ฎ๐˜ฃ๐˜ข๐˜ญ๐˜ข๐˜ฏ๐˜ค๐˜ฆ?โฃโฃ
๐Ÿ”Ÿ ๐˜ž๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ด๐˜ฉ๐˜ฐ๐˜ถ๐˜ญ๐˜ฅ ๐˜บ๐˜ฐ๐˜ถ ๐˜ข๐˜ท๐˜ฐ๐˜ช๐˜ฅ ๐˜“๐˜ฐ๐˜จ๐˜ช๐˜ด๐˜ต๐˜ช๐˜ค ๐˜™๐˜ฆ๐˜จ๐˜ณ๐˜ฆ๐˜ด๐˜ด๐˜ช๐˜ฐ๐˜ฏ?โฃโฃ

https://t.iss.one/CodeProgrammer โœ…
Please open Telegram to view this post
VIEW IN TELEGRAM
โค5
๐Ÿ‘ฉโ€๐Ÿ’ป FREE 2026 IT Learning Kits Giveaway

๐Ÿ”ฅWhether you're preparing for #Cisco #AWS #PMP #Python #Excel #Google #Microsoft #AI or any other in-demand certification โ€“ SPOTO has got you covered!

๐ŸŽ Explore Our FREE Study Resources
ยทIT Certs E-book : https://bit.ly/3YvSMHL
ยทIT exams skill Test : https://bit.ly/4r4VHnd
ยทPython, ITIL, PMP, Excel, Cyber Security, cloud, SQL Courses : https://bit.ly/4qNWl8r
ยทFree AI online preparation material and support tools : https://bit.ly/4qKiKTN

๐Ÿ”— Need IT Certs Exam Help๏ผŸ contact: wa.link/dm4kyz
๐Ÿ“ฒ Join IT Study Group for insider tips & expert support:
https://chat.whatsapp.com/BEQ9WrfLnpg1SgzGQw69oM
โค4๐Ÿ‘2
โค5๐Ÿ‘2
๐Š_๐๐ž๐š๐ซ๐ž๐ฌ๐ญ_๐๐ž๐ข๐ ๐ก๐›๐จ๐ซ๐ฌ_๐Š๐๐โฃ.pdf
2.4 MB
๐Ÿง  ๐Š-๐๐ž๐š๐ซ๐ž๐ฌ๐ญ ๐๐ž๐ข๐ ๐ก๐›๐จ๐ซ๐ฌ (๐Š๐๐)โฃ

๐Ÿ”น ๐–๐ก๐š๐ญ ๐ˆ ๐œ๐จ๐ฏ๐ž๐ซ๐ž๐ ๐ญ๐จ๐๐š๐ฒโฃ
๐–๐ก๐š๐ญ ๐Š๐๐ ๐ข๐ฌ ๐š๐ง๐ ๐ก๐จ๐ฐ ๐ข๐ญ ๐ฐ๐จ๐ซ๐ค๐ฌโฃ
๐ƒ๐ข๐Ÿ๐Ÿ๐ž๐ซ๐ž๐ง๐œ๐ž ๐›๐ž๐ญ๐ฐ๐ž๐ž๐ง ๐Š๐๐ ๐Ÿ๐จ๐ซ ๐‚๐ฅ๐š๐ฌ๐ฌ๐ข๐Ÿ๐ข๐œ๐š๐ญ๐ข๐จ๐ง ๐ฏ๐ฌ ๐‘๐ž๐ ๐ซ๐ž๐ฌ๐ฌ๐ข๐จ๐งโฃ
๐‘๐จ๐ฅ๐ž ๐จ๐Ÿ ๐Š (๐ก๐ฒ๐ฉ๐ž๐ซ๐ฉ๐š๐ซ๐š๐ฆ๐ž๐ญ๐ž๐ซ)โฃ
๐ƒ๐ข๐ฌ๐ญ๐š๐ง๐œ๐ž ๐ฆ๐ž๐ญ๐ซ๐ข๐œ๐ฌ: ๐„๐ฎ๐œ๐ฅ๐ข๐๐ž๐š๐ง ๐ฏ๐ฌ ๐Œ๐š๐ง๐ก๐š๐ญ๐ญ๐š๐งโฃ
๐–๐ก๐ฒ ๐Š๐๐ ๐ข๐ฌ ๐œ๐š๐ฅ๐ฅ๐ž๐ ๐š ๐ฅ๐š๐ณ๐ฒ / ๐ข๐ง๐ฌ๐ญ๐š๐ง๐œ๐ž-๐›๐š๐ฌ๐ž๐ ๐ฅ๐ž๐š๐ซ๐ง๐ž๐ซโฃ
โฃ
๐ŸŽฏ ๐“๐จ๐ฉ ๐Ÿ๐ŸŽ ๐ˆ๐ง๐ญ๐ž๐ซ๐ฏ๐ข๐ž๐ฐ ๐๐ฎ๐ž๐ฌ๐ญ๐ข๐จ๐ง๐ฌ (๐Œ๐ฎ๐ฌ๐ญ-๐Š๐ง๐จ๐ฐ)โฃ
โฃ
1๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜’-๐˜•๐˜ฆ๐˜ข๐˜ณ๐˜ฆ๐˜ด๐˜ต ๐˜•๐˜ฆ๐˜ช๐˜จ๐˜ฉ๐˜ฃ๐˜ฐ๐˜ณ๐˜ด (๐˜’๐˜•๐˜•)?โฃ
2๏ธโƒฃ ๐˜ž๐˜ฉ๐˜บ ๐˜ช๐˜ด ๐˜’๐˜•๐˜• ๐˜ค๐˜ข๐˜ญ๐˜ญ๐˜ฆ๐˜ฅ ๐˜ข ๐˜ญ๐˜ข๐˜ป๐˜บ ๐˜ญ๐˜ฆ๐˜ข๐˜ณ๐˜ฏ๐˜ช๐˜ฏ๐˜จ ๐˜ข๐˜ญ๐˜จ๐˜ฐ๐˜ณ๐˜ช๐˜ต๐˜ฉ๐˜ฎ?โฃ
3๏ธโƒฃ ๐˜‹๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ค๐˜ฆ ๐˜ฃ๐˜ฆ๐˜ต๐˜ธ๐˜ฆ๐˜ฆ๐˜ฏ ๐˜’๐˜•๐˜• ๐˜ค๐˜ญ๐˜ข๐˜ด๐˜ด๐˜ช๐˜ง๐˜ช๐˜ค๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜ข๐˜ฏ๐˜ฅ ๐˜’๐˜•๐˜• ๐˜ณ๐˜ฆ๐˜จ๐˜ณ๐˜ฆ๐˜ด๐˜ด๐˜ช๐˜ฐ๐˜ฏ?โฃ
4๏ธโƒฃ ๐˜๐˜ฐ๐˜ธ ๐˜ฅ๐˜ฐ ๐˜บ๐˜ฐ๐˜ถ ๐˜ค๐˜ฉ๐˜ฐ๐˜ฐ๐˜ด๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ท๐˜ข๐˜ญ๐˜ถ๐˜ฆ ๐˜ฐ๐˜ง ๐˜’?โฃ
5๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ฉ๐˜ข๐˜ฑ๐˜ฑ๐˜ฆ๐˜ฏ๐˜ด ๐˜ธ๐˜ฉ๐˜ฆ๐˜ฏ ๐˜’ ๐˜ช๐˜ด ๐˜ต๐˜ฐ๐˜ฐ ๐˜ด๐˜ฎ๐˜ข๐˜ญ๐˜ญ ๐˜ฐ๐˜ณ ๐˜ต๐˜ฐ๐˜ฐ ๐˜ญ๐˜ข๐˜ณ๐˜จ๐˜ฆ?โฃ
6๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ฅ๐˜ช๐˜ด๐˜ต๐˜ข๐˜ฏ๐˜ค๐˜ฆ ๐˜ฎ๐˜ฆ๐˜ต๐˜ณ๐˜ช๐˜ค๐˜ด ๐˜ข๐˜ณ๐˜ฆ ๐˜ค๐˜ฐ๐˜ฎ๐˜ฎ๐˜ฐ๐˜ฏ๐˜ญ๐˜บ ๐˜ถ๐˜ด๐˜ฆ๐˜ฅ ๐˜ช๐˜ฏ ๐˜’๐˜•๐˜•?โฃ
7๏ธโƒฃ ๐˜ž๐˜ฉ๐˜บ ๐˜ฅ๐˜ฐ๐˜ฆ๐˜ด ๐˜’๐˜•๐˜• ๐˜ฑ๐˜ฆ๐˜ณ๐˜ง๐˜ฐ๐˜ณ๐˜ฎ ๐˜ฑ๐˜ฐ๐˜ฐ๐˜ณ๐˜ญ๐˜บ ๐˜ฐ๐˜ฏ ๐˜ฉ๐˜ช๐˜จ๐˜ฉ-๐˜ฅ๐˜ช๐˜ฎ๐˜ฆ๐˜ฏ๐˜ด๐˜ช๐˜ฐ๐˜ฏ๐˜ข๐˜ญ ๐˜ฅ๐˜ข๐˜ต๐˜ข?โฃ
8๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜ต๐˜ฉ๐˜ฆ ๐˜ต๐˜ช๐˜ฎ๐˜ฆ ๐˜ค๐˜ฐ๐˜ฎ๐˜ฑ๐˜ญ๐˜ฆ๐˜น๐˜ช๐˜ต๐˜บ ๐˜ฐ๐˜ง ๐˜’๐˜•๐˜•?โฃ
9๏ธโƒฃ ๐˜๐˜ฐ๐˜ธ ๐˜ฅ๐˜ฐ ๐˜’๐˜‹-๐˜›๐˜ณ๐˜ฆ๐˜ฆ ๐˜ข๐˜ฏ๐˜ฅ ๐˜‰๐˜ข๐˜ญ๐˜ญ-๐˜›๐˜ณ๐˜ฆ๐˜ฆ ๐˜ช๐˜ฎ๐˜ฑ๐˜ณ๐˜ฐ๐˜ท๐˜ฆ ๐˜’๐˜•๐˜• ๐˜ฑ๐˜ฆ๐˜ณ๐˜ง๐˜ฐ๐˜ณ๐˜ฎ๐˜ข๐˜ฏ๐˜ค๐˜ฆ?โฃ
๐Ÿ”Ÿ ๐˜ž๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ด๐˜ฉ๐˜ฐ๐˜ถ๐˜ญ๐˜ฅ ๐˜บ๐˜ฐ๐˜ถ ๐˜ข๐˜ท๐˜ฐ๐˜ช๐˜ฅ ๐˜ถ๐˜ด๐˜ช๐˜ฏ๐˜จ #๐˜’๐˜•๐˜•?โฃ

https://t.iss.one/CodeProgrammer โญ๏ธ
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2