Open source инструмент на Python для выбора признаков нейронной сети
Поиск и выбор наиболее полезных признаков в датасете — одна из наиболее важных частей машинного обучения. Ненужные признаки уменьшают скорость обучения, ухудшают возможности интерпретации результатов и, что самое важное, уменьшают производительность работы.
В этой статье мы рассмотрим работу FeatureSelector. Он позволяет нам быстро внедрять эти методы, обеспечивая более эффективный рабочий процесс. Feature Selector — это незавершенный проект, который будет продолжать улучшаться в зависимости от потребностей сообщества.
Поиск и выбор наиболее полезных признаков в датасете — одна из наиболее важных частей машинного обучения. Ненужные признаки уменьшают скорость обучения, ухудшают возможности интерпретации результатов и, что самое важное, уменьшают производительность работы.
В этой статье мы рассмотрим работу FeatureSelector. Он позволяет нам быстро внедрять эти методы, обеспечивая более эффективный рабочий процесс. Feature Selector — это незавершенный проект, который будет продолжать улучшаться в зависимости от потребностей сообщества.
🔥3
Forwarded from Книги по Python | Books Python 📚
Шаблоны и практика глубокого обучения
Ферлитш Эндрю (2022)
Откройте для себя шаблоны конструирования и воспроизводимые архитектуры, которые направят ваши проекты глубокого обучения от стадии разработки к реализации. В книге рассматриваются актуальные примеры создания приложений глубокого обучения с учетом десятилетнего опыта работы автора в этой области. Вы сэкономите часы проб и ошибок, воспользовавшись представленными здесь шаблонами и приемами. Проверенные методики, образцы исходного кода и блестящий стиль повествования позволят с увлечением освоить даже непростые навыки. По мере чтения вы получите советы по развертыванию, тестированию и техническому сопровождению ваших проектов. Издание предназначено для инженеров машинного обучения, знакомых с Python и глубоким обучением.
Скачать
👉 @python_360
Ферлитш Эндрю (2022)
Откройте для себя шаблоны конструирования и воспроизводимые архитектуры, которые направят ваши проекты глубокого обучения от стадии разработки к реализации. В книге рассматриваются актуальные примеры создания приложений глубокого обучения с учетом десятилетнего опыта работы автора в этой области. Вы сэкономите часы проб и ошибок, воспользовавшись представленными здесь шаблонами и приемами. Проверенные методики, образцы исходного кода и блестящий стиль повествования позволят с увлечением освоить даже непростые навыки. По мере чтения вы получите советы по развертыванию, тестированию и техническому сопровождению ваших проектов. Издание предназначено для инженеров машинного обучения, знакомых с Python и глубоким обучением.
Скачать
👉 @python_360
👍10