Artificial Intelligence
16.3K subscribers
1.09K photos
7 videos
1 file
1.95K links
Artificial Intelligence

admin - @haarrp

@itchannels_telegram - πŸ”₯ best it channels

@ai_machinelearning_big_data - Machine learning channel

@pythonl - Our Python channel

@pythonlbooks- python ΠΊΠ½ΠΈΠ³ΠΈπŸ“š

@datascienceiot - ml πŸ“š

РКН: clck.ru/3FmwZw
Download Telegram
🦾 Bi-DexHands: Bimanual Dexterous Manipulation via Reinforcement Learning

Bi-DexHands provides a collection of bimanual dexterous manipulations tasks and reinforcement learning algorithms.

Github: https://github.com/pku-marl/dexteroushands

Isaac Gym: https://developer.nvidia.com/isaac-gym

Paper: hhttps://arxiv.org/abs/2206.08686

@ArtificialIntelligencedl
πŸ‘6
πŸ•Ή SENSORIUM 2022 Competition

The Sensorium competition on predicting large-scale mouse primary visual cortex activity

Github: https://github.com/sinzlab/sensorium

Website: https://sensorium2022.net/

Paper: https://arxiv.org/abs/2206.08666v1

@ArtificialIntelligencedl
πŸ‘5
πŸ”Ž Object Structural Points Representation for Graph-based Semantic Monocular Localization and Mapping

Github:https://github.com/airlab-polimi/c-slam

Tutorial: https://ros.org/wiki/catkin/Tutorials/create_a_workspace

Paper: https://arxiv.org/abs/2206.10263v1

@ArtificialIntelligencedl
πŸ‘5
🌩 Object Structural Points Representation for Graph-based Semantic Monocular Localization and Mapping

PyGOD is a Python library for graph outlier detection (anomaly detection).

Github: https://github.com/pygod-team/pygod

Dataset : https://paperswithcode.com/dataset/ogb

Paper: https://arxiv.org/abs/2206.10071v1

@ArtificialIntelligencedl
πŸ‘7
πŸ’» DaisyRec 2.0: Benchmarking Recommendation for Rigorous Evaluation

DaisyRec-v2.0 is a Python toolkit developed for benchmarking top-N recommendation task.

Github: https://github.com/recsys-benchmark/daisyrec-v2.0

Command Generator : https://daisyrecguicommandgenerator.pythonanywhere.com/

Paper: https://arxiv.org/abs/2206.10848v1

Tutorial: https://github.com/recsys-benchmark/DaisyRec-v2.0/blob/main/DaisyRec-v2.0-Tutorial.ipynb

@ArtificialIntelligencedl
πŸ‘7
Frequency Dynamic Convolution-Recurrent Neural Network (FDY-CRNN) for Sound Event Detection

Frequency Dynamic Convolution applied kernel that adapts to each freqeuncy bin of input, in order to remove tranlation equivariance of 2D convolution along the frequency axis.

Github: https://github.com/frednam93/FDY-SED

Paper: https://arxiv.org/abs/2206.11645v1

Dataset: https://paperswithcode.com/dataset/desed

@ArtificialIntelligencedl
πŸ”₯2
πŸŒ… Retrosynthetic Planning with Retro*

graph-based search policy that eliminates the redundant explorations of any intermediate molecules.

Github: https://github.com/binghong-ml/retro_star

Paper: https://arxiv.org/abs/2206.11477v1

Dataset: https://www.dropbox.com/s/ar9cupb18hv96gj/retro_data.zip?dl=0

@ArtificialIntelligencedl
πŸ”₯4
DDPM-CD: Remote Sensing Change Detection using Denoising Diffusion Probabilistic Models

Github: https://github.com/wgcban/ddpm-cd

Project: https://www.wgcban.com/research#h.ar24vwqlm021

Paper: https://arxiv.org/abs/2206.11892

Dataset: https://paperswithcode.com/dataset/fmow

@ArtificialIntelligencedl
πŸ‘2
BigBIO: Biomedical Datasets

Currently BigBIO provides support for

more than 120 biomedical datasets
10 languages
Harmonized dataset schemas by task type
Metadata on licensing, coarse/fine-grained task types, domain, and more!


Github: https://github.com/bigscience-workshop/biomedical

Paper: https://arxiv.org/abs/2206.15076v1

Dataset: https://paperswithcode.com/dataset/bioasq

@ArtificialIntelligencedl
πŸ‘2πŸ”₯1
πŸš— MMFN: Multi-Modal Fusion Net for End-to-End Autonomous Driving

A novel approach to efficiently extract features from vectorized High-Definition (HD) maps and utilize them in the end-to-end driving tasks.

Github: https://github.com/Kin-Zhang/mmfn

Paper: https://arxiv.org/abs/2207.00186v1

Dataset: https://github.com/carla-simulator/leaderboard/issues/81

@ArtificialIntelligencedl
πŸ‘4
AlphaCode Explained: AI Code Generation

AlphaCode is DeepMind's new massive language model for generating code. It is similar to OpenAI Codex, except for in the paper they provide a bit more analysis. The field of NLP within AI and ML has exploded get a lot more papers all the time. This video can help you understand how AlphaCode works and what some of the key takeaways are.


youtube: https://www.youtube.com/watch?v=t3Yh56efKGI
blog post: https://deepmind.com/blog/article/Competitive-programming-with-AlphaCode
paper: https://storage.googleapis.com/deepmind-media/AlphaCode/competition_level_code_generation_with_alphacode.pdf
πŸ‘7πŸ‘Ž3πŸ€”1