Evolution Strategies From Scratch in Python
https://machinelearningmastery.com/evolution-strategies-from-scratch-in-python/
@ArtificialIntelligencedl
https://machinelearningmastery.com/evolution-strategies-from-scratch-in-python/
@ArtificialIntelligencedl
Simple multi-dataset detection
Github: https://github.com/xingyizhou/UniDet
Paper: https://arxiv.org/abs/2102.13086v1
@ArtificialIntelligencedl
Github: https://github.com/xingyizhou/UniDet
Paper: https://arxiv.org/abs/2102.13086v1
@ArtificialIntelligencedl
The Absolute Guide to TensorFlow
https://blog.paperspace.com/absolute-guide-to-tensorflow/
@ArtificialIntelligencedl
https://blog.paperspace.com/absolute-guide-to-tensorflow/
@ArtificialIntelligencedl
Paperspace by DigitalOcean Blog
The Absolute Guide to TensorFlow | Paperspace Blog
In this complete guide to TensorFlow, we'll be covering topics like accelerators, tensors, constants, variables, layers, models, and more.
Are You Still Using Pandas to Process Big Data in 2021? Here are two better options
https://www.kdnuggets.com/2021/03/pandas-big-data-better-options.html
@ArtificialIntelligencedl
https://www.kdnuggets.com/2021/03/pandas-big-data-better-options.html
@ArtificialIntelligencedl
APGD for sparse adversarial attacks on image classifiers
Github: https://github.com/fra31/auto-attack
Paper: https://arxiv.org/abs/2103.01208v1
Github: https://github.com/fra31/auto-attack
Paper: https://arxiv.org/abs/2103.01208v1
GitHub
GitHub - fra31/auto-attack: Code relative to "Reliable evaluation of adversarial robustness with an ensemble of diverse parameter…
Code relative to "Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks" - fra31/auto-attack
GANsformer: Generative Adversarial Transformers
Github: https://github.com/dorarad/gansformer
Paper: https://arxiv.org/abs/2103.01209v2
@ArtificialIntelligencedl
Github: https://github.com/dorarad/gansformer
Paper: https://arxiv.org/abs/2103.01209v2
@ArtificialIntelligencedl
PyTorch 1.8 Release, including Compiler and Distributed Training updates, and New Mobile Tutorials
https://pytorch.org/blog/pytorch-1.8-released/
@ArtificialIntelligencedl
https://pytorch.org/blog/pytorch-1.8-released/
@ArtificialIntelligencedl
Speeding up Scikit-Learn Model Training
https://www.kdnuggets.com/2021/03/speed-up-scikit-learn-model-training.html
@ArtificialIntelligencedl
https://www.kdnuggets.com/2021/03/speed-up-scikit-learn-model-training.html
@ArtificialIntelligencedl
KDnuggets
Speeding up Scikit-Learn Model Training - KDnuggets
If your scikit-learn models are taking a bit of time to train, then there are several techniques you can use to make the processing more efficient. From optimizing your model configuration to leveraging libraries to speed up training through parallelization…
Attention Mechanism Exploits Temporal Contexts: Real-time 3D Human Pose Reconstruction (CVPR 2020 Oral)
https://sites.google.com/a/udayton.edu/jshen1/cvpr2020
Github: https://github.com/lrxjason/Attention3DHumanPose
Paper: https://arxiv.org/abs/2103.03170v1
@ArtificialIntelligencedl
https://sites.google.com/a/udayton.edu/jshen1/cvpr2020
Github: https://github.com/lrxjason/Attention3DHumanPose
Paper: https://arxiv.org/abs/2103.03170v1
@ArtificialIntelligencedl
TorchDrift: drift detection for PyTorch
https://torchdrift.org/
Github: https://github.com/torchdrift/torchdrift/
Example: https://torchdrift.org/notebooks/drift_detection_on_images.html
@ArtificialIntelligencedl
https://torchdrift.org/
Github: https://github.com/torchdrift/torchdrift/
Example: https://torchdrift.org/notebooks/drift_detection_on_images.html
@ArtificialIntelligencedl
Improving Graph Convolutional Networks with Lessons from Transformers
https://blog.einstein.ai/improving-graph-networks-with-transformers/
@ArtificialIntelligencedl
https://blog.einstein.ai/improving-graph-networks-with-transformers/
@ArtificialIntelligencedl
Salesforce Research
Improving Graph Convolutional Networks with Lessons from Transformers
Transformer-inspired tips for enhancing the design of neural networks that process graph-structured data
Guide To GPyTorch: A Python Library For Gaussian Process Models
https://analyticsindiamag.com/guide-to-gpytorch-a-python-library-for-gaussian-process-models/
@ArtificialIntelligencedl
https://analyticsindiamag.com/guide-to-gpytorch-a-python-library-for-gaussian-process-models/
@ArtificialIntelligencedl
Analytics India Magazine
Guide To GPyTorch: A Python Library For Gaussian Process Models
GPyTorch is a PyTorch-based library for implementing Gaussian processes. It performs GP inference via Blackbox Matrix-Matrix multiplication.
XGBoost for Regression
https://machinelearningmastery.com/xgboost-for-regression/
@ArtificialIntelligencedl
https://machinelearningmastery.com/xgboost-for-regression/
@ArtificialIntelligencedl
Know your data much faster with the new Sweetviz Python library
https://www.kdnuggets.com/2021/03/know-your-data-much-faster-sweetviz-python-library.html
@ArtificialIntelligencedl
https://www.kdnuggets.com/2021/03/know-your-data-much-faster-sweetviz-python-library.html
@ArtificialIntelligencedl
KDnuggets
Know your data much faster with the new Sweetviz Python library
One of the latest exploratory data analysis libraries is a new open-source Python library called Sweetviz, for just the purposes of finding out data types, missing information, distribution of values, correlations, etc. Find out more about the library and…
Beyond Self-Supervision: A Simple Yet Effective Network Distillation Alternative to Improve Backbones
Github: https://github.com/PaddlePaddle/PaddleClas
Paper: https://arxiv.org/abs/2103.05959v1
@ArtificialIntelligencedl
Github: https://github.com/PaddlePaddle/PaddleClas
Paper: https://arxiv.org/abs/2103.05959v1
@ArtificialIntelligencedl
GitHub
GitHub - PaddlePaddle/PaddleClas: A treasure chest for visual classification and recognition powered by PaddlePaddle
A treasure chest for visual classification and recognition powered by PaddlePaddle - PaddlePaddle/PaddleClas
TimeSformer: A new architecture for video understanding
https://ai.facebook.com/blog/timesformer-a-new-architecture-for-video-understanding/
Paper: https://arxiv.org/abs/2102.05095
@ArtificialIntelligencedl
https://ai.facebook.com/blog/timesformer-a-new-architecture-for-video-understanding/
Paper: https://arxiv.org/abs/2102.05095
@ArtificialIntelligencedl
ReDet: A Rotation-equivariant Detector for Aerial Object Detection
Github: https://github.com/csuhan/ReDet
Paper: https://arxiv.org/abs/2103.07733v1
@ArtificialIntelligencedl
Github: https://github.com/csuhan/ReDet
Paper: https://arxiv.org/abs/2103.07733v1
@ArtificialIntelligencedl
Forwarded from TensorFlow
Contactless Sleep Sensing in Nest Hub
https://ai.googleblog.com/2021/03/contactless-sleep-sensing-in-nest-hub.html
@tensorflowblog
https://ai.googleblog.com/2021/03/contactless-sleep-sensing-in-nest-hub.html
@tensorflowblog
Googleblog
Contactless Sleep Sensing in Nest Hub
Natural Language Processing Pipelines, Explained
https://www.kdnuggets.com/2021/03/natural-language-processing-pipelines-explained.html
@ArtificialIntelligencedl
https://www.kdnuggets.com/2021/03/natural-language-processing-pipelines-explained.html
@ArtificialIntelligencedl
UPANets: Learning from the Universal Pixel Attention Networks Edit social preview
Github: https://github.com/hanktseng131415go/UPANets
Paper: https://arxiv.org/pdf/2103.08640.pdf
@ArtificialIntelligencedl
Github: https://github.com/hanktseng131415go/UPANets
Paper: https://arxiv.org/pdf/2103.08640.pdf
@ArtificialIntelligencedl
👍1